降阶扩张状态观测器(LESO)在AUV运动控制中的运用

news/2024/11/19 22:32:54/

文章目录

  • 前言
  • 一、状态观测器典型例子
  • 二、线性扩张状态观测器设计

前言

      扩张状态观测器是处理复杂环境和干扰问题较好的工具,也是自抗扰控制(ADRC)中的重要手段,在解决不确定非线性的问题时得到了广泛的应用。其核心思路为:基于整个系统的输入信号和输出信号,对系统状态方程进行化简,得到积分串联型,将标准形式之外的项视为总的扰动项,然后用观测器对总的扰动项进行估计,随后反馈给控制系统。扩张状态观测器只需系统的输入和输出就可以对整个系统的全部状态变量进行估计,视总的干扰为系统状态的一部分,便可将总扰动估计并反馈给系统,从而增强整个系统的控制性能。
本文借助降阶扩张观测器对处于复杂环境下的水下机器人的运动进行分析,旨在抵抗外界干扰和模型的不确定摄动产生的影响。

一、状态观测器典型例子

      下面介绍一个典型的单输入单输出的二阶系统的观测器设计过程进行简单说明,对于一个带有不确定干扰的二阶系统,其状态方程表示为:
{ x ˙ 1 = x 2 x ˙ 2 = f ( x 1 , x 2 , w ) + b u y = x 1 \begin{cases}\dot{x}_{1}=x_{2}&\\\dot{x}_2=f(x_1,x_2,w)+bu&\\y=x_1\end{cases} x˙1=x2x˙2=f(x1,x2,w)+buy=x1其中 u u u表示系统输入,整个 f ( x 1 , x 2 , w ) f(x_1,x_2,w) f(x1,x2,w)视为总的扰动部分,既包含系统的非线性成分,又包含外界扰动, w w w为外界扰动, y y y为输出。由此建立的三阶观测器表达式为:
{ z ˙ 1 = z 2 − l 1 e 1 z ˙ 2 = z 3 + b u − l 2 e 1 z ˙ 3 = − l 3 e 1 \begin{cases}\dot{z}_1=z_2-l_1e_1&\\\dot{z}_2=z_3+bu-l_2e_1&\\\dot{z}_3=-l_3e_1\end{cases} z˙1=z2l1e1z˙2=z3+bul2e1z˙3=l3e1上式中, z 1 z_1 z1 z 2 z_2 z2 z 3 z_3 z3分别表示对 x 1 x_1 x1 x 2 x_2 x2 f ( x 1 , x 2 , w ) f(x_1,x_2,w) f(x1,x2,w)的估计, e 1 = x 1 − z 1 e_1=x_1-z_1 e1=x1z1表示 x 1 x_1 x1的估计误差。

二、线性扩张状态观测器设计

      为处理欠驱动AUV所受到的复合干扰,通过相关知识设计了线性扩张状态观测器,将其纳入控制系统中,从使整个系统鲁棒性和对环境的适应能力提高。设计过程如下:
      首先定义干扰为:
χ = [ χ u χ v χ w χ q χ r ] \chi=\begin{bmatrix}\chi_u\\\chi_v \\\chi_w\\\chi_q\\\chi_r \end{bmatrix} χ= χuχvχwχqχr 其中 χ i \chi_i χi表示各个方向上的干扰,是欠驱动AUV模型摄动和海流干扰的总的不确定项,现假设干扰 χ \chi χ是连续可微的。
      考虑复杂环境,运动学和动力学模型可以用矩阵表示为:
{ η ˙ = S ( η ) v M v ˙ + C ( v ) v + D ( v ) v + g ( η ) = τ + τ w \begin{cases}\dot{\eta}=S(\eta)v&\\M\dot{v}+C(v)v+D(v)v+g(\eta)=\tau+\tau_w\end{cases} {η˙=S(η)vMv˙+C(v)v+D(v)v+g(η)=τ+τw其中 η = [ x , y , z , θ , ψ ] T \eta=[x,y,z,\theta,\psi]^T η=[x,y,z,θ,ψ]T是位置与姿态向量, S ( η ) S(\eta) S(η)为定系和动系的转换矩阵,且 S − 1 ( η ) = S T ( η ) , v = [ u , v , w , q , r ] T S^{-1}(\eta)=S^T(\eta),v=[u,v,w,q,r]^T S1(η)=ST(η),v=[u,v,w,q,r]T为速度向量, C ( v ) C(v) C(v)为科氏向心力矩阵, τ \tau τ τ w \tau_w τw分别表示控制输入和干扰项。
      将上式化简为:
{ η ˙ = S ( η ) v v ˙ = − M − 1 ( C ( v ) v + D ( v ) v + g ( η ) ) + B u + B χ \begin{cases}\dot{\eta}=S(\eta)v&\\\dot{v}=-M^{-1}(C(v)v+D(v)v+g(\eta))+Bu+B\chi\end{cases} {η˙=S(η)vv˙=M1(C(v)v+D(v)v+g(η))+Bu+Bχ其中 B = M − 1 B=M^{-1} B=M1为控制输入矩阵。由上式所设计的线性干扰观测器的表达式为:
{ η ^ ˙ = S ( η ) v ^ + k 1 ( η − η ^ ) v ^ ˙ = − M − 1 ( C ( v ^ ) ) v ^ + D ( v ^ ) v ^ + g ( η ) ) + B u + B χ ^ + S T ( η ) k 2 ( η − η ^ ) η ^ ˙ = S T ( η ) k 3 ( η − η ^ ) \begin{cases}\dot{\hat{\eta}}=S(\eta)\hat{v}+k_1(\eta-\hat{\eta})&\\\dot{\hat{v}}=-M^{-1}(C(\hat{v}))\hat{v}+D(\hat{v})\hat{v}+g(\eta))+Bu+B\hat{\chi}+S^T(\eta)k_2(\eta-\hat{\eta})&\\\dot{\hat{\eta}}=S^T(\eta)k_3(\eta-\hat{\eta})\end{cases} η^˙=S(η)v^+k1(ηη^)v^˙=M1(C(v^))v^+D(v^)v^+g(η))+Bu+Bχ^+ST(η)k2(ηη^)η^˙=STη)k3(ηη^)其中 η ^ 、 v ^ 、 χ ^ \hat{\eta}、\hat{v}、\hat{\chi} η^v^χ^分别是对 η 、 v 、 χ \eta、v、\chi ηvχ的估计, k 1 、 k 2 k_1、k_2 k1k2 k 3 k_3 k3为参数矩阵,即观测器的增益。以下将更加详尽地给出所设计地LESO,下面分别给出给矩阵等式的具体展开式:
{ x ^ ˙ = u ^ c o s ψ c o s θ + v ^ ( c o s ψ s i n θ s i n ϕ − s i n ψ c o s ϕ ) + w ^ ( c o s ψ s i n θ c o s ϕ + s i n ψ s i n ϕ ) + k 1 ( x − x ^ ) y ^ ˙ = u ^ s i n ψ c o s θ + v ^ ( s i n ψ s i n θ s i n ϕ + c o s ψ c o s ϕ ) + w ^ ( s i n ψ s i n θ c o s ϕ − c o s ψ s i n ϕ ) + k 2 ( z − z ^ ) z ˙ ^ = − u ^ s i n θ + v ^ c o s θ s i n ϕ + w ^ c o s θ c o s ϕ + k 1 ( z − z ^ ) θ ^ ˙ = q ^ c o s ϕ − r ^ s i n ϕ + k 1 ( θ − θ ^ ) ψ ^ ˙ = q ^ s i n ϕ s e c θ + r ^ s i n ϕ s e c θ + k 1 ( ψ − ψ ^ ) \begin{cases}\dot{\hat{x}}=\hat{u}cos\psi cos\theta+\hat{v}(cos\psi sin\theta sin\phi -sin\psi cos\phi)&\\+\hat{w}(cos\psi sin\theta cos\phi +sin\psi sin\phi)+k_1(x-\hat{x})&\\\dot{\hat{y}}=\hat{u}sin\psi cos\theta+\hat{v}(sin\psi sin\theta sin\phi +cos\psi cos\phi)&\\+\hat{w}(sin\psi sin\theta cos\phi-cos\psi sin\phi)+k_2(z-\hat{z})&\\ \hat{\dot{z}}=-\hat{u}sin\theta +\hat{v}cos\theta sin\phi + \hat{w}cos\theta cos\phi+k_1(z-\hat{z})&\\\dot{{\hat{\theta}}}=\hat{q}cos\phi-\hat{r}sin\phi+k_1(\theta-\hat{\theta})&\\\dot{\hat{\psi}}=\hat{q}sin\phi sec{\theta}+\hat{r}sin\phi sec\theta+k_1(\psi-\hat{\psi})\end{cases} x^˙=u^cosψcosθ+v^(cosψsinθsinϕsinψcosϕ)+w^(cosψsinθcosϕ+sinψsinϕ)+k1(xx^)y^˙=u^sinψcosθ+v^(sinψsinθsinϕ+cosψcosϕ)+w^(sinψsinθcosϕcosψsinϕ)+k2(zz^)z˙^=u^sinθ+v^cosθsinϕ+w^cosθcosϕ+k1(zz^)θ^˙=q^cosϕr^sinϕ+k1(θθ^)ψ^˙=q^sinϕsecθ+r^sinϕsecθ+k1(ψψ^)
{ u ^ ˙ = 1 m u ( F u + χ u − d u ^ ) + k 2 [ ( x − x ^ ) s i n ψ c o s θ + ( y − y ^ ) s i n ψ c o s θ − ( z − z ^ ) s i n θ ] v ^ ˙ = 1 m v ( χ v ^ − m u r u ^ r ^ − d v ^ ) + k 2 [ − ( x − x ^ ) s i n ψ + ( y − y ^ ) c o s ψ + ( z − z ^ ) ( c o s ψ s i n θ c o s ϕ − c o s ψ s i n ϕ ) ] w ^ ˙ = 1 m w ( χ w ^ − m u q u ^ q ^ − d w ^ ) + k 2 [ ( x − x ^ ) s i n θ c o s ψ + ( y − y ^ ) s i n ψ s i n θ + ( z − z ^ ) c o s θ ] q ^ ˙ = 1 m q ( χ q ^ − d q ^ ) + k 2 ( θ − θ ^ ) c o s ϕ r ^ ˙ = 1 m r ( χ r ^ − d r ^ ) + k 2 ( ψ − ψ ^ ) s e c ψ \begin{cases}\dot{\hat{u}}={1\over{m_u}}(F_u+\chi_u-\hat{d_{u}})+k_2[(x-\hat{x})sin\psi cos\theta +(y-\hat{y})sin\psi cos\theta -(z-\hat{z})sin\theta]&\\\dot{\hat{v}}={1\over{m_v}}(\hat{\chi_v}-m_{ur}{\hat{u}\hat{r}}-\hat{d_v})&\\+k_2[-(x-\hat{x})sin\psi+(y-\hat{y})cos\psi+(z-\hat{z})(cos\psi sin\theta cos\phi-cos\psi sin\phi)]&\\\dot{\hat{w}}={1\over{m_w}}(\hat{\chi_w}-m_{uq}\hat{u}\hat{q}-\hat{d_w})+k_2[(x-\hat{x})sin\theta cos\psi +(y-\hat{y})sin\psi sin\theta+(z-\hat{z})cos\theta]&\\\dot{\hat{q}}={1\over{m_q}}(\hat{\chi_q}-\hat{d_q})+k_2(\theta-\hat{\theta})cos\phi&\\\dot{\hat{r}}={1\over{m_r}}(\hat{\chi_r}-\hat{d_r})+k_2(\psi-\hat{\psi})sec\psi\end{cases} u^˙=mu1(Fu+χudu^)+k2[(xx^)sinψcosθ+(yy^)sinψcosθ(zz^)sinθ]v^˙=mv1(χv^muru^r^dv^)+k2[(xx^)sinψ+(yy^)cosψ+(zz^)(cosψsinθcosϕcosψsinϕ)]w^˙=mw1(χw^muqu^q^dw^)+k2[(xx^)sinθcosψ+(yy^)sinψsinθ+(zz^)cosθ]q^˙=mq1(χq^dq^)+k2(θθ^)cosϕr^˙=mr1(χr^dr^)+k2(ψψ^)secψ
{ χ ^ u ˙ = k 3 [ ( x − x ^ s i n ψ c o s θ + ( y − y ^ s i n ψ c o s θ − ( z − z ^ ) s i n θ ] χ ^ v ˙ = k 3 [ − ( x − x ^ ) s i n ψ + ( y − y ^ ) c o s ψ + ( z − z ^ ) ( c o s ψ s i n θ c o s ϕ − c o s ψ s i n ϕ ) ] χ ^ w ˙ = k 3 [ ( x − x ^ ) s i n θ c o s ψ + ( y − y ^ ) s i n ψ s i n θ + ( z − z ^ ) c o s θ ] χ ^ q ˙ = k 3 ( θ − θ ^ ) c o s ϕ χ ^ r ˙ = k 3 ( ψ − ψ ^ ) s e c ψ \begin{cases}\dot{\hat{\chi}_u}=k_3[(x-\hat{x}sin\psi cos\theta +(y-\hat{y}sin\psi cos\theta -(z-\hat{z})sin\theta]&\\\dot{\hat{\chi}_v}=k_3[-(x-\hat{x})sin\psi +(y-\hat{y})cos\psi +(z-\hat{z})(cos\psi sin\theta cos\phi -cos\psi sin\phi)]&\\\dot{\hat{\chi}_w}=k_3[(x-\hat{x})sin\theta cos\psi +(y-\hat{y})sin\psi sin\theta +(z-\hat{z})cos\theta]&\\\dot{\hat{\chi}_q}=k_3(\theta-\hat{\theta})cos\phi&\\\dot{\hat{\chi}_r}=k_3(\psi-\hat{\psi})sec\psi\end{cases} χ^u˙=k3[(xx^sinψcosθ+(yy^sinψcosθ(zz^)sinθ]χ^v˙=k3[(xx^)sinψ+(yy^)cosψ+(zz^)(cosψsinθcosϕcosψsinϕ)]χ^w˙=k3[(xx^)sinθcosψ+(yy^)sinψsinθ+(zz^)cosθ]χ^q˙=k3(θθ^)cosϕχ^r˙=k3(ψψ^)secψ上式中 d ^ ( ) \hat{d}_{()}{} d^()表示将 d ( ) d_{()} d()中的速度用估计速度代替后的项。


http://www.ppmy.cn/news/835029.html

相关文章

AUV光源优化方法+水下图像增强方法

《Underwater image enhancement framework and its application on an autonomous underwater vehicle platform》 摘要一、水下成像模型二、光源优化方法1、光源、摄像机、海底三者关系模型2、求得合适的光源角度 三、水下图像增强方法(EME)1、照度校正…

【Paper】2021_The leaderless multi-AUV system fault-tolerant consensus strategy under heterogeneous co

Lin X, Tian W, Zhang W, et al. The leaderless multi-AUV system fault-tolerant consensus strategy under heterogeneous communication topology[J]. Ocean Engineering, 2021, 237: 109594. 文章目录 1 Introduction2 Preliminaries and problem formulation2.1 Graph th…

虚拟向导AUV的速度推算

文章目录 前言一、虚拟向导AUV速度推导二、李氏函数一阶导负定性分析 前言 针对AUV的路径跟踪控制问题,引入了SF坐标系和虚拟向导,本文基于李雅普诺夫方法进行虚拟向导AUV的速度的推导,得到 s ˙ \dot{s} s˙,进而得到期望路径参…

avue

avue 一、crud 表格 1. 表格自带编辑 查看 新增 功能(可自定义): 编辑:$refs.crud.rowEdit(row,index)查看:$refs.crud.rowView(row,index)新增:$refs.crud.rowAdd() 2.表格可用方法 行内删除&#xff…

au

波形: 波形对单个文件进行操作 多轨道:多轨道是对多个轻音乐文件进行操作 新建音频 采样率:常用44100、48000赫兹 96000DVD采样、48000数字电视或者专业音频采样、44100CD采样 声道: 单声道、立体声(左声道右声道) 位深度&…

AUV运动描述模型建立(1)

参考文献: 李曾妮. 移动对接过程中的欠驱动AUV路径规划方法研究[D].浙江大学2022. 徐炜翔. 面向水下自主航行器回收的路径规划研究[D].江苏科技大学.

AUV直线路径跟踪仿真-反步滑模方法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 文章目录 前言 一、整体思路 二、控制器设计 1.纵向推力-反步法 2.转艏力矩-滑模方法 三、虚拟AUV速度推算 四、仿真实现 1.艏向制导误差和滑模面函数 2.控…

AUV路径跟踪视线法(Line Of Sight)制导原理

文章目录 前言一、趋近角的表达式二、水平面趋近角原理三、趋近角选择优势 前言 针对路径跟踪问题,为调整 AUV 趋向且收敛至期望路径,本文对视线角(Line Of Sight)导航的方法原理进行介绍。 就水平面视线法原理进行具体介绍,垂直面上与之类似…