算法的时间复杂度和空间复杂度

news/2024/11/24 22:25:57/

在这里插入图片描述

算法的时间复杂度和空间复杂度

  • 🦖算法的效率
    • 🐳如何衡量一个算法的好坏
    • 🐳算法的复杂度
  • 🦖时间复杂度
    • 🐳时间复杂度的概念
    • 🐳大O的渐近表示法
          • 大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
          • 推导大O阶方法:
          • 在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
    • 🐳常见时间复杂度计算举例
  • 🦖空间复杂度
          • 实例1:
          • 实例2:
          • 实例3:
          • 实例答案及分析:
  • 🦖常见复杂度对比
  • 🦖复杂度的OJ练习
  • 🦖结语

🦖算法的效率

🐳如何衡量一个算法的好坏

我们应该如何衡量一个算法的好坏呢?比如对于以下斐波那契数列的计算:

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但是简洁的代码一定性能好吗?

🐳算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

🦖时间复杂度

🐳时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

Func1 执行的基本操作次数 :
F(N)=N2+2∗N+10F(N) = N^2 + 2*N + 10 F(N)=N2+2N+10

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

🐳大O的渐近表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:
O(N2)O(N^2) O(N2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

​ 最坏情况:任意输入规模的最大运行次数(上界)

​ 平均情况:任意输入规模的期望运行次数

​ 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

​ 最好情况:1次找到

​ 最坏情况:N次找到

​ 平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

🐳常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

  1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
  2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
  3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
  4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
  5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
  6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
  7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
  8. 实例8通过计算分析发现基本操作递归了2^ N次,时间复杂度为O(2^N)。

🦖空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}
实例2:
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}
实例3:
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}
实例答案及分析:
  1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
  2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
  3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

🦖常见复杂度对比

一般算法常见的复杂度如下:

在这里插入图片描述

🦖复杂度的OJ练习

消失的数字OJ链接

旋转数组OJ链接

🦖结语

到这里这篇博客已经结束啦。
这份博客👍如果对你有帮助,给博主一个免费的点赞以示鼓励欢迎各位🔎点赞👍评论收藏⭐️,谢谢!!!
如果有什么疑问或不同的见解,欢迎评论区留言欧👀


http://www.ppmy.cn/news/27266.html

相关文章

【11-JVM面试专题-说说你知道的垃圾回收算法?垃圾回收器你知道吗?CMS、G1和ZGC垃圾回收器你有过了解吗?】

JVM面试专题-说说你知道的垃圾回收算法&#xff1f;垃圾回收器你知道吗&#xff1f;CMS、G1和ZGC垃圾回收器你有过了解吗&#xff1f; JVM面试专题-说说你知道的垃圾回收算法&#xff1f;垃圾回收器你知道吗&#xff1f;CMS、G1和ZGC垃圾回收器你有过了解吗&#xff1f;你掌握的…

我的 System Verilog 学习记录(2)

引言 从本文开始&#xff0c;就开始系统学习 System Verilog &#xff0c;不只是语法&#xff0c;还有结合 Questa Sim 的实际编程练习、Debug。 本文简单介绍 System Verilog 语言的用途以及学习的必要性。 前文链接&#xff1a; 我的 System Verilog 学习记录&#xff08…

剑指 Offer 47. 礼物的最大价值

剑指 Offer 47. 礼物的最大价值 难度&#xff1a;middle\color{orange}{middle}middle 题目描述 在一个 m*n 的棋盘的每一格都放有一个礼物&#xff0c;每个礼物都有一定的价值&#xff08;价值大于 0&#xff09;。你可以从棋盘的左上角开始拿格子里的礼物&#xff0c;并每次…

Java static+private实现单例模式

1. 单例模式介绍 在Java中单例设计模式准确来说是&#xff0c;类的单例设计模式&#xff0c;就是采取一定的方法保证在整个的软件系统中&#xff0c;对某个类只能存在一个对象实例&#xff0c;并且该类只提供一个取得其对象实例的方法。 2. 实现思路 如果我们要让类在一个虚…

操作系统作业

1、下列关于线程的描述中&#xff0c;错误的是A&#xff0e;内核级线程的调度由操作系统完成B&#xff0e;操作系统为每个用户级线程建立一个线程控制块C&#xff0e;用户级线程间的切换比内核级线程间的切换效率高D&#xff0e;用户级线程可以在不支持内核级线程的操作系统上实…

FPGA纯verilog代码实现H.264/AVC视频解码,提供工程源码和技术支持

目录1、前言2、硬件H.264/AVC视频解码优势3、vivado工程设计架构4、代码架构分析5、vivado仿真6、福利&#xff1a;工程代码的获取1、前言 本设计是一种verilog代码实现的低功耗H.264/AVC解码器(baseline )&#xff0c;硬件ASIC设计&#xff0c;不使用任何GPP/DSP等内核&#…

斗地主洗牌发牌-课后程序(JAVA基础案例教程-黑马程序员编著-第六章-课后作业)

【案例6-4】 斗地主洗牌发牌 【案例介绍】 1.任务描述 扑克牌游戏“斗地主”&#xff0c;相信许多人都会玩&#xff0c;本案例要求编写一个斗地主的洗牌发牌程序&#xff0c;要求按照斗地主的规则完成洗牌发牌的过程。一副扑克总共有54张牌&#xff0c;牌面由花色和数字组成…

git 的使用方法(上 - 指令)

目录前言&#xff1a;一、Git 是什么&#xff1f;二、SVN与Git的最主要的区别&#xff1f;三、Git 安装四、git 配置1. 创建仓库 - repository2. 配置3. 工作流与基本操作五、Git 的使用流程1. 仓库中创建 1.txt文件2. 查看工作区的文件状态3. 添加工作区文件到暂存区4. 创建版…