基于 Seq2Seq 的中英文翻译项目(pytorch)

news/2024/10/8 20:31:12/

项目简介

本项目旨在使用 PyTorch 构建一个基于 Seq2Seq(编码器-解码器架构)的中英文翻译模型。我们将使用双语句子对的数据进行训练,最终实现一个能够将英文句子翻译为中文的模型。项目的主要步骤包括:

  1. 数据预处理:从数据集中提取英文和中文句子,并进行初步清洗和保存。
  2. 数据加载与分词:将预处理后的数据加载进内存,进行分词处理,并构建词汇表。
  3. 模型构建:实现 Seq2Seq 模型的编码器和解码器部分。
  4. 模型训练与验证:使用训练集对模型进行训练,并使用验证集评估模型性能。
  5. 测试与推理:使用训练好的模型进行实际的翻译测试。

Step 1: 数据预处理

目的

从原始数据集中提取英文和中文句子,并将其转换为模型能够使用的格式。

流程

  1. 读取文件:从给定的文本文件中读取每一行数据。
  2. 提取句子:每一行数据包含英文和中文句子,我们将其分割并提取出这两部分。
  3. 保存处理后的数据:将处理后的句子保存为两个单独的文件,一个保存英文句子,另一个保存中文句子。

代码

python">import pandas as pd# 加载数据文件并进行预处理
file_path = 'data/cmn.txt'  # 请确保数据文件位于该路径下# 读取文件并处理每一行,提取英文和中文句子
data = []
with open(file_path, 'r', encoding='utf-8') as file:for line in file:# 每行数据使用制表符分割,提取英文和中文部分parts = line.strip().split('\t')if len(parts) >= 2:english_sentence = parts[0].strip()chinese_sentence = parts[1].strip()data.append([english_sentence, chinese_sentence])# 创建 DataFrame 保存提取的句子
df = pd.DataFrame(data, columns=['English', 'Chinese'])# 将处理后的英文和中文句子分别保存为两个文件
df['English'].to_csv('data/english_sentences.txt', index=False, header=False)
df['Chinese'].to_csv('data/chinese_sentences.txt', index=False, header=False)# 显示前几行以验证处理是否正确
print(df.head())

输出示例

  English Chinese
0     Hi.      嗨。
1     Hi.     你好。
2    Run!    你跑吧!
3    Run!    你快跑!
4   Who?      是谁?

Step 2: 数据加载与分词

目的

将预处理后的数据加载进内存,对每个句子进行分词处理,并构建英文和中文的词汇表。

流程

  1. 定义分词器:英文使用基本的英文分词器,中文采用字符级分割。
  2. 构建词汇表:基于分词后的数据构建词汇表,并添加特殊标记,如 <unk><pad><bos><eos>
  3. 将句子转换为索引序列:将分词后的句子转换为词汇表中的索引序列,准备用于模型的输入。
  4. 创建数据集和数据加载器:将处理后的数据封装成可用于模型训练的数据集和数据加载器。

代码

python">import torch
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator# 定义英文和中文的分词器
tokenizer_en = get_tokenizer('basic_english')# 中文分词器:将每个汉字作为一个 token
def tokenizer_zh(text):return list(text)# 构建词汇表函数
def build_vocab(sentences, tokenizer):def yield_tokens(sentences):for sentence in sentences:yield tokenizer(sentence)vocab = build_vocab_from_iterator(yield_tokens(sentences), specials=['<unk>', '<pad>', '<bos>', '<eos>'])vocab.set_default_index(vocab['<unk>'])return vocab# 从文件中加载句子
with open('data/english_sentences.txt', 'r', encoding='utf-8') as f:english_sentences = [line.strip() for line in f]with open('data/chinese_sentences.txt', 'r', encoding='utf-8') as f:chinese_sentences = [line.strip() for line in f]# 构建词汇表
en_vocab = build_vocab(english_sentences, tokenizer_en)
zh_vocab = build_vocab(chinese_sentences, tokenizer_zh)print(f'英文词汇表大小:{len(en_vocab)}')
print(f'中文词汇表大小:{len(zh_vocab)}')# 将句子转换为索引序列,并添加 <bos> 和 <eos>
def process_sentence(sentence, tokenizer, vocab):tokens = tokenizer(sentence)tokens = ['<bos>'] + tokens + ['<eos>']indices = [vocab[token] for token in tokens]return indices# 处理所有句子
en_sequences = [process_sentence(sentence, tokenizer_en, en_vocab) for sentence in english_sentences]
zh_sequences = [process_sentence(sentence, tokenizer_zh, zh_vocab) for sentence in chinese_sentences]# 示例:查看处理后的索引序列
print("示例英文句子索引序列:", en_sequences[0])
print("示例中文句子索引序列:", zh_sequences[0])

创建数据集和数据加载器

python">from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequenceclass TranslationDataset(Dataset):def __init__(self, src_sequences, trg_sequences):self.src_sequences = src_sequencesself.trg_sequences = trg_sequencesdef __len__(self):return len(self.src_sequences)def __getitem__(self, idx):return torch.tensor(self.src_sequences[idx]), torch.tensor(self.trg_sequences[idx])def collate_fn(batch):src_batch, trg_batch = [], []for src_sample, trg_sample in batch:src_batch.append(src_sample)trg_batch.append(trg_sample)src_batch = pad_sequence(src_batch, padding_value=en_vocab['<pad>'])trg_batch = pad_sequence(trg_batch, padding_value=zh_vocab['<pad>'])return src_batch, trg_batch# 创建数据集
dataset = TranslationDataset(en_sequences, zh_sequences)# 划分训练集和验证集
from sklearn.model_selection import train_test_split
train_data, val_data = train_test_split(dataset, test_size=0.1)# 创建数据加载器
batch_size = 32
train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
val_dataloader = DataLoader(val_data, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)

Step 3: Seq2Seq 模型构建

目的

构建一个基于 Seq2Seq 结构的模型,用于序列到序列的翻译任务。Seq2Seq 模型主要包括两个部分:

  1. 编码器(Encoder):负责接收输入的英文句子,将其编码为上下文向量。
  2. 解码器(Decoder):根据编码器的输出上下文向量,逐字生成中文翻译。

编码器

python">import torch.nn as nnclass Encoder(nn.Module):def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):"""初始化编码器:param input_dim: 输入词汇表的大小(英文词汇表大小):param emb_dim: 词嵌入维度:param hid_dim: 隐藏层维度:param n_layers: LSTM 层数:param dropout: Dropout 概率"""super().__init__()self.embedding = nn.Embedding(input_dim, emb_dim)self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout)self.dropout = nn.Dropout(dropout)def forward(self, src):"""前向传播:param src: [src_len, batch_size]:return: hidden, cell"""embedded = self.dropout(self.embedding(src))outputs, (hidden, cell) = self.rnn(embedded)return hidden, cell

解码器

python">class Decoder(nn.Module):def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):"""初始化解码器:param output_dim: 输出词汇表大小(中文词汇表大小):param emb_dim: 词嵌入维度:param hid_dim: 隐藏层维度:param n_layers: LSTM 层数:param dropout: Dropout 概率"""super().__init__()self.output_dim = output_dimself.embedding = nn.Embedding(output_dim, emb_dim)self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout)self.fc_out = nn.Linear(hid_dim, output_dim)self.dropout = nn.Dropout(dropout)def forward(self, input, hidden, cell):"""前向传播:param input: [batch_size]:param hidden: [n_layers, batch_size, hid_dim]:param cell: [n_layers, batch_size, hid_dim]:return: prediction, hidden, cell"""input = input.unsqueeze(0)  # [1, batch_size]embedded = self.dropout(self.embedding(input))  # [1, batch_size, emb_dim]output, (hidden, cell) = self.rnn(embedded, (hidden, cell))prediction = self.fc_out(output.squeeze(0))  # [batch_size, output_dim]return prediction, hidden, cell

Seq2Seq 模型

python">class Seq2Seq(nn.Module):def __init__(self, encoder, decoder, device):"""初始化 Seq2Seq 模型:param encoder: 编码器对象:param decoder: 解码器对象:param device: 设备(CPU 或 GPU)"""super().__init__()self.encoder = encoderself.decoder = decoderself.device = devicedef forward(self, src, trg, teacher_forcing_ratio=0.5):"""前向传播:param src: [src_len, batch_size]:param trg: [trg_len, batch_size]:param teacher_forcing_ratio: 教师强制比率:return: outputs, [trg_len, batch_size, output_dim]"""batch_size = src.shape[1]trg_len = trg.shape[0]trg_vocab_size = self.decoder.output_dim# 存储解码器输出outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device)# 编码器输出hidden, cell = self.encoder(src)# 解码器初始输入为 <bos> tokeninput = trg[0, :]  # [batch_size]for t in range(1, trg_len):# 解码器前向传播output, hidden, cell = self.decoder(input, hidden, cell)outputs[t] = output# 决定是否使用教师强制teacher_force = torch.rand(1).item() < teacher_forcing_ratiotop1 = output.argmax(1)  # [batch_size]input = trg[t] if teacher_force else top1return outputs

Step 4: 模型训练与验证

目的

通过训练集对模型进行训练,并使用验证集评估模型性能。

定义损失函数和优化器

python">import torch.optim as optimdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 定义模型参数
INPUT_DIM = len(en_vocab)
OUTPUT_DIM = len(zh_vocab)
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
HID_DIM = 512
N_LAYERS = 2
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5# 初始化模型
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT)
model = Seq2Seq(enc, dec, device).to(device)# 定义损失函数和优化器
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss(ignore_index=zh_vocab['<pad>'])

训练和验证函数

python">def train(model, dataloader, optimizer, criterion, clip):model.train()epoch_loss = 0for src, trg in dataloader:src, trg = src.to(device), trg.to(device)optimizer.zero_grad()output = model(src, trg)# output: [trg_len, batch_size, output_dim]# trg: [trg_len, batch_size]output_dim = output.shape[-1]output = output[1:].view(-1, output_dim)trg = trg[1:].reshape(-1)loss = criterion(output, trg)loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), clip)optimizer.step()epoch_loss += loss.item()return epoch_loss / len(dataloader)def evaluate(model, dataloader, criterion):model.eval()epoch_loss = 0with torch.no_grad():for src, trg in dataloader:src, trg = src.to(device), trg.to(device)output = model(src, trg, teacher_forcing_ratio=0)output_dim = output.shape[-1]output = output[1:].view(-1, output_dim)trg = trg[1:].reshape(-1)loss = criterion(output, trg)epoch_loss += loss.item()return epoch_loss / len(dataloader)

训练与验证循环

python">n_epochs = 10
clip = 1for epoch in range(n_epochs):train_loss = train(model, train_dataloader, optimizer, criterion, clip)val_loss = evaluate(model, val_dataloader, criterion)print(f'Epoch {epoch+1}/{n_epochs}, Train Loss: {train_loss:.3f}, Val Loss: {val_loss:.3f}')

Step 5: 测试与推理

目的

使用训练好的模型,接受用户输入的英文句子,并生成对应的中文翻译。

代码

python">def translate_sentence(sentence, model, en_vocab, zh_vocab, tokenizer_en, max_len=50):model.eval()tokens = tokenizer_en(sentence)tokens = ['<bos>'] + tokens + ['<eos>']src_indices = [en_vocab[token] for token in tokens]src_tensor = torch.LongTensor(src_indices).unsqueeze(1).to(device)  # [src_len, 1]with torch.no_grad():hidden, cell = model.encoder(src_tensor)trg_indices = [zh_vocab['<bos>']]for i in range(max_len):trg_tensor = torch.LongTensor([trg_indices[-1]]).to(device)with torch.no_grad():output, hidden, cell = model.decoder(trg_tensor, hidden, cell)pred_token = output.argmax(1).item()trg_indices.append(pred_token)if pred_token == zh_vocab['<eos>']:breaktrg_tokens = [zh_vocab.lookup_token(idx) for idx in trg_indices]return ''.join(trg_tokens[1:-1])  # 去除 <bos> 和 <eos># 示例测试
input_sentence = "How are you?"
translation = translate_sentence(input_sentence, model, en_vocab, zh_vocab, tokenizer_en)
print(f"英文句子: {input_sentence}")
print(f"中文翻译: {translation}")

总结

通过本项目,我们从数据预处理、分词与词汇表构建,到模型的定义、训练和测试,完整地实现了一个基于 Seq2Seq 模型的中英文翻译系统。该模型能够接受用户输入的英文句子,并生成对应的中文翻译。该项目不仅加深了我们对 Seq2Seq 模型的理解,也为进一步研究机器翻译和自然语言处理技术奠定了基础。

python"># 基于 Seq2Seq 的中英文翻译模型# 导入必要的库
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
from sklearn.model_selection import train_test_split# 检查是否有可用的 GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Using device: {device}')# Step 1: 数据预处理
# 读取原始数据并提取英文和中文句子file_path = 'data/cmn.txt'  # 请确保数据文件位于该路径下# 读取文件并处理每一行,提取英文和中文句子
data = []
with open(file_path, 'r', encoding='utf-8') as file:for line in file:# 每行数据使用制表符分割,提取英文和中文部分parts = line.strip().split('\t')if len(parts) >= 2:english_sentence = parts[0].strip()chinese_sentence = parts[1].strip()data.append([english_sentence, chinese_sentence])# 创建 DataFrame 保存提取的句子
df = pd.DataFrame(data, columns=['English', 'Chinese'])# 将处理后的英文和中文句子分别保存为两个文件
df['English'].to_csv('data/english_sentences.txt', index=False, header=False)
df['Chinese'].to_csv('data/chinese_sentences.txt', index=False, header=False)# 显示前五行数据
print(df.head())# Step 2: 数据加载与分词# 定义英文和中文的分词器
tokenizer_en = get_tokenizer('basic_english')# 中文分词器:将每个汉字作为一个 token
def tokenizer_zh(text):return list(text)# 构建词汇表的函数
def build_vocab(sentences, tokenizer):"""根据给定的句子列表和分词器构建词汇表。:param sentences: 句子列表:param tokenizer: 分词器函数:return: 词汇表对象"""def yield_tokens(sentences):for sentence in sentences:yield tokenizer(sentence)vocab = build_vocab_from_iterator(yield_tokens(sentences), specials=['<unk>', '<pad>', '<bos>', '<eos>'])vocab.set_default_index(vocab['<unk>'])  # 设置默认索引为 <unk>return vocab# 从文件中加载句子
with open('data/english_sentences.txt', 'r', encoding='utf-8') as f:english_sentences = [line.strip() for line in f]with open('data/chinese_sentences.txt', 'r', encoding='utf-8') as f:chinese_sentences = [line.strip() for line in f]# 构建英文和中文的词汇表
en_vocab = build_vocab(english_sentences, tokenizer_en)
zh_vocab = build_vocab(chinese_sentences, tokenizer_zh)print(f'英文词汇表大小:{len(en_vocab)}')
print(f'中文词汇表大小:{len(zh_vocab)}')# 定义将句子转换为索引序列的函数
def process_sentence(sentence, tokenizer, vocab):"""将句子转换为索引序列,并添加 <bos> 和 <eos>:param sentence: 输入句子:param tokenizer: 分词器函数:param vocab: 对应的词汇表:return: 索引序列"""tokens = tokenizer(sentence)tokens = ['<bos>'] + tokens + ['<eos>']indices = [vocab[token] for token in tokens]return indices# 将所有句子转换为索引序列
en_sequences = [process_sentence(sentence, tokenizer_en, en_vocab) for sentence in english_sentences]
zh_sequences = [process_sentence(sentence, tokenizer_zh, zh_vocab) for sentence in chinese_sentences]# 查看示例句子的索引序列
print("示例英文句子索引序列:", en_sequences[0])
print("示例中文句子索引序列:", zh_sequences[0])# 创建数据集和数据加载器class TranslationDataset(Dataset):def __init__(self, src_sequences, trg_sequences):self.src_sequences = src_sequencesself.trg_sequences = trg_sequencesdef __len__(self):return len(self.src_sequences)def __getitem__(self, idx):return torch.tensor(self.src_sequences[idx]), torch.tensor(self.trg_sequences[idx])def collate_fn(batch):"""自定义的 collate_fn,用于将批次中的样本进行填充对齐"""src_batch, trg_batch = [], []for src_sample, trg_sample in batch:src_batch.append(src_sample)trg_batch.append(trg_sample)src_batch = pad_sequence(src_batch, padding_value=en_vocab['<pad>'])trg_batch = pad_sequence(trg_batch, padding_value=zh_vocab['<pad>'])return src_batch, trg_batch# 创建数据集对象
dataset = TranslationDataset(en_sequences, zh_sequences)# 划分训练集和验证集
train_data, val_data = train_test_split(dataset, test_size=0.1)# 创建数据加载器
batch_size = 32
train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
val_dataloader = DataLoader(val_data, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)# Step 3: Seq2Seq 模型构建# 定义编码器
class Encoder(nn.Module):def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):"""初始化编码器:param input_dim: 输入词汇表的大小(英文词汇表大小):param emb_dim: 词嵌入维度:param hid_dim: 隐藏层维度:param n_layers: LSTM 层数:param dropout: Dropout 概率"""super().__init__()self.embedding = nn.Embedding(input_dim, emb_dim)self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout)self.dropout = nn.Dropout(dropout)def forward(self, src):"""前向传播:param src: [src_len, batch_size]:return: hidden, cell"""embedded = self.dropout(self.embedding(src))  # [src_len, batch_size, emb_dim]outputs, (hidden, cell) = self.rnn(embedded)  # outputs: [src_len, batch_size, hid_dim]return hidden, cell  # hidden/cell: [n_layers, batch_size, hid_dim]# 定义解码器
class Decoder(nn.Module):def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):"""初始化解码器:param output_dim: 输出词汇表大小(中文词汇表大小):param emb_dim: 词嵌入维度:param hid_dim: 隐藏层维度:param n_layers: LSTM 层数:param dropout: Dropout 概率"""super().__init__()self.output_dim = output_dimself.embedding = nn.Embedding(output_dim, emb_dim)self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout)self.fc_out = nn.Linear(hid_dim, output_dim)self.dropout = nn.Dropout(dropout)def forward(self, input, hidden, cell):"""前向传播:param input: [batch_size]:param hidden: [n_layers, batch_size, hid_dim]:param cell: [n_layers, batch_size, hid_dim]:return: prediction, hidden, cell"""input = input.unsqueeze(0)  # [1, batch_size]embedded = self.dropout(self.embedding(input))  # [1, batch_size, emb_dim]output, (hidden, cell) = self.rnn(embedded, (hidden, cell))  # output: [1, batch_size, hid_dim]prediction = self.fc_out(output.squeeze(0))  # [batch_size, output_dim]return prediction, hidden, cell# 定义 Seq2Seq 模型
class Seq2Seq(nn.Module):def __init__(self, encoder, decoder, device):"""初始化 Seq2Seq 模型:param encoder: 编码器对象:param decoder: 解码器对象:param device: 设备(CPU 或 GPU)"""super().__init__()self.encoder = encoderself.decoder = decoderself.device = devicedef forward(self, src, trg, teacher_forcing_ratio=0.5):"""前向传播:param src: [src_len, batch_size]:param trg: [trg_len, batch_size]:param teacher_forcing_ratio: 教师强制比率:return: outputs, [trg_len, batch_size, output_dim]"""batch_size = src.shape[1]trg_len = trg.shape[0]trg_vocab_size = self.decoder.output_dim# 存储解码器输出outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device)# 编码器输出hidden, cell = self.encoder(src)# 解码器初始输入为 <bos> tokeninput = trg[0, :]  # [batch_size]for t in range(1, trg_len):# 解码器前向传播output, hidden, cell = self.decoder(input, hidden, cell)outputs[t] = output# 决定是否使用教师强制teacher_force = torch.rand(1).item() < teacher_forcing_ratiotop1 = output.argmax(1)  # [batch_size]input = trg[t] if teacher_force else top1return outputs# 初始化模型参数
INPUT_DIM = len(en_vocab)
OUTPUT_DIM = len(zh_vocab)
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
HID_DIM = 512
N_LAYERS = 2
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5# 实例化编码器、解码器和 Seq2Seq 模型
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT)
model = Seq2Seq(enc, dec, device).to(device)# 初始化模型参数
def init_weights(m):for name, param in m.named_parameters():nn.init.uniform_(param.data, -0.08, 0.08)model.apply(init_weights)# 定义损失函数和优化器
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss(ignore_index=zh_vocab['<pad>'])# Step 4: 模型训练与验证# 定义训练函数
def train(model, dataloader, optimizer, criterion, clip):model.train()epoch_loss = 0for src, trg in dataloader:src, trg = src.to(device), trg.to(device)optimizer.zero_grad()output = model(src, trg)# output: [trg_len, batch_size, output_dim]# trg: [trg_len, batch_size]output_dim = output.shape[-1]output = output[1:].view(-1, output_dim)  # 去掉 <bos>trg = trg[1:].reshape(-1)loss = criterion(output, trg)loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), clip)  # 防止梯度爆炸optimizer.step()epoch_loss += loss.item()return epoch_loss / len(dataloader)# 定义验证函数
def evaluate(model, dataloader, criterion):model.eval()epoch_loss = 0with torch.no_grad():for src, trg in dataloader:src, trg = src.to(device), trg.to(device)output = model(src, trg, teacher_forcing_ratio=0)  # 关闭教师强制output_dim = output.shape[-1]output = output[1:].view(-1, output_dim)  # 去掉 <bos>trg = trg[1:].reshape(-1)loss = criterion(output, trg)epoch_loss += loss.item()return epoch_loss / len(dataloader)# 开始训练模型
n_epochs = 10
clip = 1for epoch in range(n_epochs):train_loss = train(model, train_dataloader, optimizer, criterion, clip)val_loss = evaluate(model, val_dataloader, criterion)print(f'Epoch {epoch+1}/{n_epochs}, Train Loss: {train_loss:.3f}, Val Loss: {val_loss:.3f}')# Step 5: 测试与推理# 定义翻译函数
def translate_sentence(sentence, model, en_vocab, zh_vocab, tokenizer_en, max_len=50):"""翻译英文句子为中文:param sentence: 英文句子(字符串):param model: 训练好的 Seq2Seq 模型:param en_vocab: 英文词汇表:param zh_vocab: 中文词汇表:param tokenizer_en: 英文分词器:param max_len: 最大翻译长度:return: 中文翻译(字符串)"""model.eval()tokens = tokenizer_en(sentence)tokens = ['<bos>'] + tokens + ['<eos>']src_indices = [en_vocab[token] for token in tokens]src_tensor = torch.LongTensor(src_indices).unsqueeze(1).to(device)  # [src_len, 1]with torch.no_grad():hidden, cell = model.encoder(src_tensor)trg_indices = [zh_vocab['<bos>']]for i in range(max_len):trg_tensor = torch.LongTensor([trg_indices[-1]]).to(device)with torch.no_grad():output, hidden, cell = model.decoder(trg_tensor, hidden, cell)pred_token = output.argmax(1).item()trg_indices.append(pred_token)if pred_token == zh_vocab['<eos>']:breaktrg_tokens = [zh_vocab.lookup_token(idx) for idx in trg_indices]return ''.join(trg_tokens[1:-1])  # 去除 <bos> 和 <eos># 示例测试
input_sentence = "How are you?"
translation = translate_sentence(input_sentence, model, en_vocab, zh_vocab, tokenizer_en)
print(f"英文句子: {input_sentence}")
print(f"中文翻译: {translation}")# 您可以在此处输入其他英文句子进行测试
while True:input_sentence = input("请输入英文句子(输入 'quit' 退出):")if input_sentence.lower() == 'quit':breaktranslation = translate_sentence(input_sentence, model, en_vocab, zh_vocab, tokenizer_en)print(f"中文翻译: {translation}")

http://www.ppmy.cn/news/1536280.html

相关文章

SpringMVC2~~~

数据格式化 提交数据(比如表单)&#xff0c;对提交的数据进行转换和处理 基本数据类型可以和字符串自动转换 <a href"<%request.getContextPath()%>/addMonsterUI">添加妖怪</a> Controller Scope(value "prototype") public class …

搭建安全的分析环境

分析恶意软件&#xff0c;动态行为分析是必不可少的一步&#xff0c;所有样本都必须在虚拟环境中执行&#xff0c;不可在主机上执行。因此&#xff0c;我们要需要搭建供动态分析的环境以及防止在主机运行的环境。 动态分析环境搭建 工具 虚拟机 虚拟机软件有很多&#xff0…

YOLOv5复现(论文复现)

YOLOv5复现&#xff08;论文复现&#xff09; 本文所涉及所有资源均在传知代码平台可获取 文章目录 YOLOv5复现&#xff08;论文复现&#xff09;概述模型结构正负样本匹配策略损失计算数据增强使用方式训练测试验证Demo 概述 YOLOv5是由Ultralytics公司于2020年6月开源的目标检…

EtherCAT 转 EtherNet/IP, EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关

EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关https://item.taobao.com/item.htm?ftt&id822721028899协议转换通信网关 EtherCAT 转 EtherNet/IP GW系列型号 MS-GW12 概述 MS-GW12 是 EtherCAT 和 EtherNet/IP 协议转换网关&#xff0c;为用户提供两…

python 实现最小路径和算法

最小路径和算法介绍 最小路径和问题通常指的是在一个网格&#xff08;如二维数组&#xff09;中&#xff0c;找到从起点&#xff08;如左上角&#xff09;到终点&#xff08;如右下角&#xff09;的一条路径&#xff0c;使得路径上经过的元素值之和最小。这类问题可以通过多种…

kubernetes笔记(七)

一、service管理 1.clusterIP 1&#xff09;创建服务 # 资源对象模板 [rootmaster ~]# kubectl create service clusterip mysvc --tcp80:80 --dry-runclient -o yaml [rootmaster ~]# vim mysvc.yaml --- kind: Service apiVersion: v1 metadata:name: mysvc spec:type: Cl…

Python进阶--函数进阶

目录 1. 函数多返回值 2. 函数多种传参方式 (1). 位置参数 (2). 关键字参数 (3). 缺省参数 (4). 不定长参数 3. 匿名函数 (1). 函数作为参数传递 (2). lambda匿名函数 1. 函数多返回值 def return_num():return 1# 返回1之后就不会再向下继续执行函数体return 2 resu…

用java编写飞机大战

游戏界面使用JFrame和JPanel构建。背景图通过BG类绘制。英雄机和敌机在界面上显示并移动。子弹从英雄机发射并在屏幕上移动。游戏有四种状态&#xff1a;READY、RUNNING、PAUSE、GAMEOVER。状态通过鼠标点击进行切换&#xff1a;点击开始游戏&#xff08;从READY变为RUNNING&am…