python 实现最小路径和算法

news/2024/12/21 22:42:33/

最小路径和算法介绍

最小路径和问题通常指的是在一个网格(如二维数组)中,找到从起点(如左上角)到终点(如右下角)的一条路径,使得路径上经过的元素值之和最小。这类问题可以通过多种算法来解决,包括但不限于递归、动态规划、Dijkstra算法等。然而,针对网格中只能向下或向右移动一步的限制,递归和动态规划是更常用的方法。

递归方法

递归方法的基本思路是尝试所有可能的路径,并计算每条路径的和,最后取最小值。然而,这种方法的时间复杂度可能非常高,因为它会尝试所有可能的路径组合,这通常是O(2^(m+n)),其中m和n分别是网格的行数和列数。为了优化递归,可以在过程中记录已计算的最小值,并在遇到更大的路径和时提前终止递归。

动态规划方法

动态规划是解决这类问题的更常用和更有效的方法。基本思路是,到达网格中每个位置的最小路径和,可以由其上方和左方位置的最小路径和加上当前位置的值得到。因此,可以从网格的右下角开始,逆向计算到左上角,或者从左上角开始正向计算到右下角。通常,使用一个与原网格大小相同的二维数组(或一维数组,取决于空间优化)来存储每个位置的最小路径和。

Dijkstra算法

虽然Dijkstra算法通常用于图的最短路径问题,但在这个特定的问题中(即网格中的最短路径问题),它可能不是最直接或最高效的解决方案。Dijkstra算法适用于带权重的图,其中权重可以是正数或零,但不能是负数。然而,在网格问题中,我们通常处理的是非负整数,并且网格的结构(只能向下或向右移动)允许使用更简单的方法,如动态规划。

总结

对于网格中的最小路径和问题,推荐使用动态规划方法,因为它能够高效地找到最短路径,并且相对容易实现。递归方法虽然直观,但可能面临时间复杂度过高的问题。而Dijkstra算法虽然强大,但在这个特定问题中可能不是最佳选择。

请注意,上述算法的解释和比较是基于一般的理解和经验,具体实现时可能需要根据问题的具体要求进行调整。

python_20">最小路径和算法python实现样例

以下是使用动态规划实现最小路径和算法的 Python 代码:

python">def minPathSum(grid):m = len(grid)  # 获取网格的行数n = len(grid[0])  # 获取网格的列数# 创建二维dp数组,用于存储最小路径和dp = [[0] * n for _ in range(m)]# 计算第一行和第一列的最小路径和,这里只能沿着网格的边界走,所以最小路径和只能累加dp[0][0] = grid[0][0]  # 左上角的最小路径和就是 grid[0][0]for i in range(1, m):dp[i][0] = dp[i - 1][0] + grid[i][0]  # 第一列的最小路径和等于上面的路径和加上当前网格的值for j in range(1, n):dp[0][j] = dp[0][j - 1] + grid[0][j]  # 第一行的最小路径和等于左边的路径和加上当前网格的值# 计算其他位置的最小路径和,取上方和左方路径和的最小值加上当前网格的值for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]return dp[m - 1][n - 1]  # 最后一个网格的最小路径和即为结果

使用示例:

python">grid = [[1, 3, 1],[1, 5, 1],[4, 2, 1]
]
print(minPathSum(grid))  # 输出 7

上述代码中,我们使用二维dp数组来存储每个位置的最小路径和。首先计算第一行和第一列的最小路径和,然后计算其他位置的最小路径和。最后返回右下角网格的最小路径和即为结果。


http://www.ppmy.cn/news/1536275.html

相关文章

kubernetes笔记(七)

一、service管理 1.clusterIP 1)创建服务 # 资源对象模板 [rootmaster ~]# kubectl create service clusterip mysvc --tcp80:80 --dry-runclient -o yaml [rootmaster ~]# vim mysvc.yaml --- kind: Service apiVersion: v1 metadata:name: mysvc spec:type: Cl…

Python进阶--函数进阶

目录 1. 函数多返回值 2. 函数多种传参方式 (1). 位置参数 (2). 关键字参数 (3). 缺省参数 (4). 不定长参数 3. 匿名函数 (1). 函数作为参数传递 (2). lambda匿名函数 1. 函数多返回值 def return_num():return 1# 返回1之后就不会再向下继续执行函数体return 2 resu…

用java编写飞机大战

游戏界面使用JFrame和JPanel构建。背景图通过BG类绘制。英雄机和敌机在界面上显示并移动。子弹从英雄机发射并在屏幕上移动。游戏有四种状态:READY、RUNNING、PAUSE、GAMEOVER。状态通过鼠标点击进行切换:点击开始游戏(从READY变为RUNNING&am…

力扣203.移除链表元素

题目链接:203. 移除链表元素 - 力扣(LeetCode) 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6…

解决方案:机器学习中,出现欠拟合和过拟合,这两种情况分别如何解决

文章目录 一、现象二、解决方案欠拟合(Underfitting)过拟合(Overfitting) 一、现象 在工作中,在机器学习中,出现欠拟合和过拟合的时候,需要有对应的解决方法,所以整理一下 二、解决…

c基础面试题

1.static和const的作用 static意为静态的,在C语言中可以修饰变量。如果是全局变量则只能在当前文件范围访问。 如果是函数内的局部变量则延长生命周期到整个程序。这意味着如果函数被多次调用,这个变量不会被重新初始化,而是保留上次调用结…

视频剪辑软件推荐电脑版:这5款剪辑软件不容错过!

在视频剪辑领域,选择合适的软件至关重要。不同的软件各有千秋,有的简单易用,适合新手快速上手;有的功能强大,适合专业团队进行深度编辑。以下是一些电脑版视频剪辑软件的推荐,涵盖了从新手到专业级别的不同…

大数据算法的思维

大数据算法的分类 一、分类算法 1. 决策树算法:通过构建树状结构,对数据进行分类。例如 ID3、C4.5 和 CART 算法,它们根据不同的特征选择标准进行分支划分,最终形成一颗能够对新数据进行分类的决策树。 2. 支持向量机&#xff08…