单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA

news/2024/11/16 15:55:23/

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       单目标问题的FW烟花优化算法求解matlab仿真,对比PSOGA。最后将FW,GAPSO三种优化算法的优化收敛曲线进行对比。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.....................................................................
for t=1:Iter%计算每个烟花适应度值for i=1:Npopyfit(i)=func_fitness(x(i,:));end[F(t),~]=min(yfit);Fmin=min(yfit);% 当前代最小适应度Fmax=max(yfit);% 当前代最大适应度%计算每个烟花的爆炸半径E_R和爆炸数目E_N以及产生的爆炸火花E_R = zeros(1,Npop);E_N = zeros(1,Npop);% 高斯变异火花产生Mut=randperm(Npop); % 随机选取烟花索引for m1=1:M   % 对M个烟花进行变异m=Mut(m1);            % 随机选取烟花for n=1:E_N(m)e=1+sqrt(1)*randn(1,Dim); % 高斯变异因子sparks(n,:,m)=sparks(n,:,m).*e;% 应用变异% 变异后的位置约束 if sparks(n,1,m)>500||sparks(n,1,m)<100sparks(n,1,m)=unifrnd(100,500,1,1); endif sparks(n,2,m)>79||sparks(n,2,m)<69sparks(n,2,m)= unifrnd(69,79,1,1);endendend[Fitness,X]=sort(Fitness);  % 适应度升序排列x(1,:)=E_Sum(X(1),:);    % 最优个体dist=pdist(E_Sum);       % 求解各火花两两间的欧式距离S=squareform(dist);      % 将距离向量重排成n*n数组P = zeros(1,n);for i=1:n                % 分别求各行之和P(i)=sum(S(i,:));end
end%求最大值输出
[F(Iter),Y]=min(Fit2);figure;
plot(F, 'LineWidth', 2)
xlabel('迭代次数')
ylabel('目标函数值')
title('FWA算法迭代曲线');save R3.mat  F
48

4.本算法原理

        烟花优化算法是一种模拟自然界烟花爆炸现象的启发式算法,由烟花发射、爆炸、再次爆炸和再次发射四个阶段组成。该算法通过模拟烟花在夜空中爆炸的过程,探索搜索空间,寻找全局最优解。

  • 适应性与灵活性:FWA通过模拟烟花爆炸的动态过程,提供了搜索空间的多样性,适合解决复杂、非线性问题;PSO通过粒子的速度和位置更新快速接近最优解,适合快速收敛的问题;GA通过模拟生物进化机制,具有较强的全局搜索能力,适用于解空间较大的问题。
  • 参数调整:FWA的爆炸半径和火花数直接影响搜索效率和精度,需仔细调整;PSO的惯性权重w、加速常数c1​,c2​对算法性能影响显著;GA的选择压力、交叉概率和变异概率是关键参数,需根据问题特性仔细设定。
  • 收敛性和稳定性:FWA在后期迭代中可能因火花过度密集而降低搜索效率;PSO易陷入局部最优,特别是在高维问题中;GA的收敛速度较慢,但通常能获得较好的全局解。

5.完整程序

VVV


http://www.ppmy.cn/news/1456089.html

相关文章

自动驾驶主流芯片及平台架构(二)特斯拉自动驾驶芯片平台介绍

早期 对外采购mobileye EyeQ3 芯片摄像头半集成方案&#xff0c;主要是为了满足快速量产需求&#xff0c;且受制于研发资金不足限制&#xff1b; 中期 采用高算力NVIDIA 芯片平台其他摄像头供应商的特斯拉内部集成方案&#xff0c;mobileye开发节奏无法紧跟特斯拉需求&#xff…

【动态规划】数组中数字和为sum的方案个数

【动态规划】数组中数字和为sum的方案个数 给定一个有 n n n个正整数的数组 a 和一个正整数 s u m sum sum&#xff0c;求选择数组 a 中 部分数字和为 s u m sum sum的方案数。若两种选取方案有一个数字的下标不一样&#xff0c;则认为是不同的方案。 输入描述&#xff1a;…

计算机系列之数据库技术

13、数据库技术&#xff08;重点、考点&#xff09; 1、三级模式-两级映像&#xff08;考点&#xff09; 内模式&#xff1a;管理如何存储物理的数据&#xff0c;对应具体物理存储文件。 **模式&#xff1a;**又称为概念模式&#xff0c;就是我们通常使用的基本表&#xff0c…

缓存菜品操作

一&#xff1a;问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大。 二&#xff1a;实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; 每个分…

Python高级编程-DJango2

Python高级编程-DJango2 没有清醒的头脑&#xff0c;再快的脚步也会走歪&#xff1b;没有谨慎的步伐&#xff0c;再平的道路也会跌倒。 目录 Python高级编程-DJango2 1.显示基本网页 2.输入框的形式&#xff1a; 1&#xff09;文本输入框 2&#xff09;单选框 3&#xff…

一些可用于研究的GIS数据资源

国内的情况就不用说了&#xff0c;基本上是很难找到可以用于研究的GIS数据资源的。要么就是收费&#xff0c;免费的即使能找到&#xff0c;能否合法合规的进行使用也是一个问题。地理信息数据还是国外比较开放一些&#xff0c;相当多的政府组织或者公益机构对公众开放了下载渠道…

基于alpha shapes的边缘点提取(matlab)

1、原理介绍 由Edelsbrunner H提出的alpha shapes算法是一种简单、有效的快速提取边界点算法。其克服了点云边界点形状影响的缺点&#xff0c;可快速准确提取边界点。如下图所示&#xff0c;对于任意形状的平面点云&#xff0c;若一个半径为a的圆&#xff0c;绕其进行滚动&…

数据库(MySQL)—— DQL语句(基本查询和条件查询)

数据库&#xff08;MySQL&#xff09;—— DQL语句&#xff08;基本查询和条件查询&#xff09; 什么是DQL语句基本查询查询多个字段字段设置别名去除重复记录 条件查询语法条件 我们今天进入MySQL的DQL语句的学习&#xff1a; 什么是DQL语句 MySQL中的DQL&#xff08;Data Q…