【深度学习】Dropout、DropPath

server/2024/11/14 21:12:01/

一、Dropout

1. 概念

Dropout 在训练阶段会让当前层每个神经元以drop_prob( 0 ≤ drop_prob ≤ 1 0\leq\text{drop\_prob}\leq1 0drop_prob1)的概率失活并停止工作,效果如下图。

测试阶段不会进行Dropout。由于不同批次、不同样本的神经元失活情况不同,测试时枚举所有情况进行推理是不现实的,所以原文使用一种均值近似的方法进行逼近。详情如下图:

如图, w \bold{w} w为一个神经元后的权重。假设该神经元的输出均值为 μ \mu μ,若训练阶段该神经元的存活概率为 p p p,则Dropout使其输出均值变为 p × μ p\times\mu p×μ,为使测试时该神经元输出逼近训练输出,测试阶段该神经元输出会被乘上 p p p以使测试与训练输出均值相同。

简单来说,训练时Dropout按照概率drop_prob使神经元停止工作,测试时所有神经元正常工作,但其输出值要乘上1-drop_prob( p = 1 − drop_prob p=1-\text{drop\_prob} p=1drop_prob)。

不过,我们希望测试代码执行效率尽可能高,即便仅增加一个概率计算也不是我们希望的。所以实际计算时,会在训练阶段给神经元乘上一个缩放因子 1 p \frac{1}{p} p1。这样,训练输出的均值仍为 μ \mu μ,测试则不进行Dropout也不再乘上 p p p而是原样输出。

2. 功能

优势:
Dropout能够提高网络的泛化能力,防止过拟合。解释如下:
(1) 训练阶段每个神经元是相互独立的,仅drop_prob相同,即使是同一批次不同样本失活的神经元也是不同的。所以原文作者将Dropout的操作视为多种模型结构下结果的集成,由于集成方法能够避免过拟合,因此Dropout也能达到同样的效果。
(2) 减少神经元之间的协同性。有些神经元可能会建立与其它节点的固定联系,通过Dropout强迫神经元和随机挑选出来的其它神经元共同工作,减弱了神经元节点间的联合适应性,增强了泛化能力。
劣势:
(1) Dropout减缓了收敛的速度。训练时需要通过伯努利分布生成是否drop每一个神经元的情况,额外的乘法和缩放运算也会增加时间。
(2) Dropout一般用于全连接层,卷积层一般使用BatchNorm来防止过拟合。Dropout与BatchNorm不易兼容,Dropout导致训练过程中每一层输出的方差发生偏移,使得BatchNorm层统计的方差不准确,影响BatchNorm的正常使用。

3. 实现

import torch.nn as nn
import torchclass dropout(nn.Module):def __init__(self, drop_prob):super(dropout, self).__init__()assert 0 <= drop_prob <= 1, 'drop_prob should be [0, 1]'self.drop_prob = drop_probdef forward(self, x):if self.training:keep_prob = 1 - self.drop_probmask = keep_prob + torch.rand(x.shape)mask.floor_()return x.div(keep_prob) * maskelse:return xif __name__ == '__main__':x = torch.randn((8, 768))  # [batch_size, feat_dim],dropout常在全连接层之后,所以我们以一维数据为例drop = dropout(0.1)my_o = drop(x)

二、DropPath

1. 概念

DropPath 在训练阶段深度学习网络中的多分支结构随机删除,效果如下图:

上图是ViT中的一个模块,多分支体现在ResNet结构的引入。可以看出,DropPath在多分支中起作用对位置有明确的要求,需要放在分支合并之前。此外,DropPath也需要对训练输出进行缩放(乘 1 1 − drop_prob \frac{1}{1-\text{drop\_prob}} 1drop_prob1)以确保测试输出结果的有效性和计算的高效性,这样在测试阶段就不会进行DropPath。

事实上,DropPath功能的实现是按照drop_prob概率将该分支的当前输出全部置0。具体来说,对于某个含有DropPath的分支,该分支输出的一个批次的每个样本都独立的按照drop_prob概率被完全置0或完整保留。

2. 功能

一般可以作为正则化手段加入网络防止过拟合,但会增加网络训练的难度。如果设置的drop_prob过高,模型甚至有可能不收敛。

3. 实现

import torch
import torch.nn as nnclass DropPath(nn.Module):"""随机丢弃该分支上的每个样本"""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):if self.drop_prob == 0. or not self.training:return xkeep_prob = 1 - self.drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # (batch_size, 1, 1, 1)维数与输入保持一致,仅需要batch_size个值mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)mask.floor_()  # 二值化,向下取整用于确定保存哪些样本output = x.div(keep_prob) * maskreturn outputif __name__ == "__main__":x = torch.randn((8, 197, 768))  # [batch_size, num_token, token_dim]drop_path = DropPath(drop_prob=0.5)my_o = drop_path(x)

致谢:

本博客仅做记录使用,无任何商业用途,参考内容如下:
【个人理解向】Dropout和Droppath原理及源码讲解
nn.Dropout、DropPath的理解与pytorch代码
Drop系列正则化


http://www.ppmy.cn/server/15151.html

相关文章

Python爬虫入门指南--爬虫技术的由来、发展与未来--实战课程大赠送

爬虫&#xff0c;也称为网络爬虫或网络蜘蛛&#xff0c;是一种自动化程序&#xff0c;专门用于遍历互联网并收集数据。这种技术的起源、发展和未来都与互联网紧密相连&#xff0c;并在信息检索、数据挖掘等多个领域发挥着不可或缺的作用。 "免费IP池大放送&#xff01;助…

学习笔记-微服务高级(黑马程序员)

Sentinel 测试软件 jmeter 雪崩问题 个微服务往往依赖于多个其它微服务,服务提供者I发生了故障&#xff0c;依赖于当前服务的其它服务随着时间的推移形成级联失败 超时处理 设定超时时间&#xff0c;请求超过一定时间没有响应就返回错误信息 仓壁模式 限定每个业务能使用的线…

SpringBoot Redis使用篇

引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId…

nacos外接mysql的docker部署方式

文章目录 引言I 安装nacos(m1版本)1.1 镜像启动1.2 查看docker容器日志1.3 开启鉴权II 外接mysql的docker部署方式2.1 复制mysql-schema.sql2.2 导入mysql-schema.sqlIII 配置远程用户3.1 创建数据库远程用户3.2 案例: 创建nacos用户,用于nacos配置3.3 查看远程用户是否有密码…

python爬虫 - 爬取html中的script数据(股票行情信息 - 雪球网 )

文章目录 1. 分析页面内容数据格式2. 使用re.findall方法&#xff0c;爬取股票行情&#xff08;返回信息异常&#xff09;3. 使用re.findall方法&#xff0c;爬取股票行情&#xff08;正常&#xff09;4. 使用re.search 方法&#xff0c;爬取股票行情&#xff08;返回信息异常&…

(C++) 内类生成智能指针shared_from_this介绍

文章目录 &#x1f601;介绍&#x1f914;类外操作&#x1f605;错误操作&#x1f602;正确操作 &#x1f914;类内操作&#x1f62e;std::enable_shared_from_this<>&#x1f62e;奇异递归模板 CRTP&#xff08;Curiously Recurring Template Pattern&#xff09;&#…

考研日常记录(upd 24.4.24)

由于实在太无聊了 &#xff0c; 所以记录以下考研备考日常 &#xff0c; 增加一点成就感 &#xff0c; 获得一点前进动力。 文章目录 2024.4.18 周四课程情况&#xff1a;时间规划&#xff1a; 2024.4.19 周五课程情况&#xff1a;时间规划&#xff1a; 2024.4.20 周六2024.4.2…

mybatis快速入门-注解版

mybatis 使用注解&#xff0c;简化 xml 配置&#xff0c;汲及到动态 sql 或是多表查询&#xff0c;还是使用 xml 映射文件配置编写。(企业工作中&#xff0c;几乎全是 xml 配置&#xff0c;xml 的 sql 使用注解方式少,而类引用注解方式)。 注解 Select()&#xff1a;查询Inse…