【大语言模型】ACL2024论文-12 大型语言模型的能力如何受到监督式微调数据组成影响

ops/2024/11/17 21:59:09/

【大语言模型】ACL2024论文-12 大型语言模型的能力如何受到监督式微调数据组成影响

论文:https://arxiv.org/pdf/2310.05492
在这里插入图片描述

目录

文章目录

  • 【大语言模型】ACL2024论文-12 大型语言模型的能力如何受到监督式微调数据组成影响
    • 论文:https://arxiv.org/pdf/2310.05492 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/257626ae6bb94aa0811812699a8d831b.png)
    • 目录
    • 摘要
    • 研究背景
    • 问题与挑战
    • 如何解决
    • 创新点
    • 算法模型
    • 实验效果
    • 重要数据与结论
    • 推荐阅读指数:★★★★☆
    • 后记


大型语言模型的能力如何受到监督式微调数据组成影响》

摘要

本文研究了大型语言模型(LLMs)在数学推理、代码生成和一般人类对齐能力方面的多样化能力,以及这些能力如何通过监督式微调(SFT)得到增强。研究团队提出了四个研究问题来探索模型性能与数据量、数据组成比例、模型规模和SFT策略之间的关联。实验结果显示,不同的能力在数据量增加时表现出不同的扩展模式,且在相同数据量下,更大的模型通常表现出更优越的性能。数学推理和代码生成随着数据量的增加而持续改进,而一般能力在大约一千个样本后达到平稳。此外,数据组成在有限数据条件下似乎可以增强各种能力,但在数据充足时可能导致性能冲突。研究还发现,组成数据的数量比组成比例对性能的影响更大。在SFT策略分析中,研究者发现顺序学习多种技能可能导致灾难性遗忘。为此,提出了一种双阶段混合微调(DMT)策略,该策略提供了一个有希望的解决方案,用于学习具有不同扩展模式的多种能力。

研究背景

随着大型语言模型(LLMs)的发展,它们在处理自然语言任务方面展现出了卓越的能力。这些模型通过在大量预训练数据上训练,获得了包括数学推理、代码生成和遵循人类指令在内的多种能力。为了进一步提升这些能力,研究者们采用了监督式微调(SFT)的方法。然而,尽管已有研究探索了针对单一任务的SFT,但对于如何在多任务环境中通过SFT提升LLMs的多方面能力,仍缺乏深入理解。
在这里插入图片描述

问题与挑战

LLMs在多任务学习中面临的主要挑战包括:

  1. 数据量与性能的扩展模式:不同的任务(如数学推理和代码生成)在数据量增加时,其性能提升的模式可能不同。
  2. 多任务学习中的性能冲突:在同时微调多个任务时,可能会出现性能冲突,即某些任务的性能提升以牺牲其他任务的性能为代价。
  3. 灾难性遗忘:在顺序学习多个任务时,模型可能会忘记先前学习的任务,导致性能下降。
  4. 数据组成的影响:数据的组成比例和数量对模型性能有显著影响,但目前尚不清楚如何最佳地组合数据以提升多任务性能。

如何解决

为了解决上述挑战,研究者们采取了以下方法:

  • 提出研究问题:通过定义四个研究问题来指导研究,这些问题涉及数据量、数据组成比例、模型规模和SFT策略对性能的影响。
  • 实验设计:在不同的数据集和模型规模上进行广泛的实验,以评估不同因素对性能的影响。
  • 双阶段混合微调(DMT)策略:提出了一种新的SFT策略,旨在减少多任务学习中的性能冲突,并减轻顺序学习中的灾难性遗忘问题。

创新点

本文的主要创新点包括:

  1. 多任务学习中的性能扩展模式:揭示了不同任务在数据量增加时的性能扩展模式,为理解LLMs的多任务学习能力提供了新的视角。
  2. 双阶段混合微调(DMT)策略:提出了一种新的SFT策略,有效地平衡了多任务学习中的性能冲突和灾难性遗忘问题。
  3. 数据组成的影响分析:通过实验分析了数据组成比例和数量对模型性能的影响,为如何组合数据提供了指导。

算法模型

本文中提到的算法模型主要是大型语言模型(LLMs),特别是LLaMA系列模型。这些模型在不同的数据集上进行微调,以激活数学推理、代码生成和一般人类对齐能力。研究者们探索了四种不同的SFT策略:

  1. 多任务学习:直接混合不同的SFT数据源进行微调。
  2. 顺序训练:按顺序在每个数据集上应用SFT。
  3. 混合顺序训练:先在专业数据集上进行多任务学习,然后在一般能力数据集上进行SFT。
  4. 双阶段混合微调(DMT):首先在专业数据集上进行SFT,然后在一般数据和少量专业数据的混合数据集上进行第二阶段的SFT。

实验效果

实验结果表明:

  • 性能扩展模式:数学推理和代码生成能力随着数据量的增加而持续改进,而一般能力在大约一千个样本后达到平稳。
  • 数据组成的影响:在有限数据条件下,数据组成可以增强各种能力,但在数据充足时可能导致性能冲突。
  • DMT策略的有效性:DMT策略在减少性能冲突和减轻灾难性遗忘方面表现出色,特别是在数学推理和代码生成任务上。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

重要数据与结论

一些关键数据和结论包括:

  • 模型规模的影响:更大的模型在相同数据量下通常表现出更好的性能。
  • 数据量与性能的关系:不同任务的性能随着数据量的增加而表现出不同的扩展模式。
  • DMT策略的优越性:DMT策略在多任务学习中有效地平衡了性能,减轻了灾难性遗忘问题。

推荐阅读指数:★★★★☆


后记

如果您对我的博客内容感兴趣,欢迎三连击 (***点赞、收藏和关注 ***)和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术


http://www.ppmy.cn/ops/134546.html

相关文章

中心极限定理的三种形式

独立同分布的中心极限定理: 设 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1​,X2​,…,Xn​是独立同分布的随机变量序列,且 E ( X i ) μ E(X_i) \mu E(Xi​)μ, D ( X i ) σ 2 > 0 D(X_i) \sigma^2 > 0 D(Xi​)σ2>0存在…

处理namespace问题:Namespace not specified for AGP 8.0.0

How do I fix ‘namespace not specified’ error in Android Studio? Namespace not specified for AGP 8.0.0 解决方案 <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/androi…

Flink算子

文章目录 mapfilterflatMapkeyByaggregationsreduce物理分区算子富函数splitside outputunion(联合)connect(连接&#xff09; map Map 算子会遍历数据流的每一个元素产生一个新的元素。 public static void main(String[] args) throws Exception {StreamExecutionEnvironmen…

A032-基于Spring Boot的健康医院门诊在线挂号系统

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…

tauri开发中,使用node将png图片转成苹果的icns图标格式,解决tauri icon生成的mac图标过大问题

在tauri开发中&#xff0c;我们使用tauri icon生成的图标在windows上是正常的&#xff0c;但是在mac上就显示过大&#xff0c;也可以看tauri的issue&#xff1a;[v2]When using the Tauri Icon to generate icons, it is always larger than other icons in Mac tauri-apps/ta…

大数据应用开发——实时数据处理(一)

前言 大数据应用开发——实时数据采集 大数据应用开发——实时数据处理 Flink完成Kafka中的数据消费&#xff0c;将数据分发至Kafka的dwd层中 并在HBase中进行备份 大数据应用开发——数据可视化 hadoop&#xff0c;zookeeper&#xff0c;kafka&#xff0c;flink要开启 目…

SpringCloud Feign 报错 Request method ‘POST‘ not supported 的解决办法

Request method POST not supportedorg.springframework.web.HttpRequestMethodNotSupportedException: Request method POST not supported解决办法: 在远程调用fegin使用GET请求时 应该附加注解 RequestParam(“pgQuery”) 实体类或者单个参数同样适用 在controller接受参数…

处理继承自QWidget类的自定义类背景样式不生效问题【Qt】

处理继承自QWidget类的自定义类背景样式不生效问题 问题解答 问题 问题抛出&#xff1a;   当我们定义一个自定义类&#xff0c;并且继承自QWidget类&#xff1a;   为我们的自定义类进行构造&#xff1a;   这是运行后的表现&#xff0c;其中每一份测试人物&#xff…