文章目录
- map
- filter
- flatMap
- keyBy
- aggregations
- reduce
- 物理分区算子
- 富函数
- split
- side output
- union(联合)
- connect(连接)
map
Map 算子会遍历数据流的每一个元素产生一个新的元素。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);SingleOutputStreamOperator<Integer> source = env.socketTextStream("192.168.235.130", 8888).map(new MapFunction<String, Integer>() {@Overridepublic Integer map(String s) throws Exception {return Integer.valueOf(s)*10;}});source.print();env.execute();}
filter
filter算子通过一个布尔表达式对数据流的元素进行过滤,若为true则正常输出该元素,若为false则过滤掉该元素。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);SingleOutputStreamOperator<String> filter = env.socketTextStream("192.168.235.130", 8888).filter(new FilterFunction<String>() {@Overridepublic boolean filter(String s) throws Exception {String[] data = s.split(",");return "10".equals(data[1]);}});filter.print();env.execute();}
flatMap
flatMap遍历数据流中的每一个元素产生N(N >= 0)个元素。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);SingleOutputStreamOperator<String> flatMap = env.socketTextStream("192.168.235.130", 8888).flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String s, Collector<String> collector) throws Exception {String[] data = s.split(",");for (String str : data) {collector.collect(str);}}});flatMap.print();env.execute();}
keyBy
在使用聚合算子之前通常要经过keyBy分组,keyBy通过指定的key将数据流中的数据划分到不同的分区,那么具有相同key的数据都被发送到同一个分区,但一个分区中可能存在不同key的数据,底层原理是通过计算key的哈希值对分区数取模来实现的,如果key是POJO类型必须重写hashCode()方法。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(10);KeyedStream<String, String> keyedStream = env.socketTextStream("192.168.235.130", 8888).keyBy(new KeySelector<String, String>() {@Overridepublic String getKey(String s) throws Exception {String[] data = s.split(",");return data[1];}});keyedStream.print();env.execute();}
aggregations
aggregations包含以下聚合算子,在数据流中,sum()
用于对指定的字段求和,min()
对指定的字段求最小值,max()
对指定的字段求最大值,maxby()
取比较字段的最大值,同时非比较字段 取 最大值这条数据的值,minBy()
同理,取比较字段的最小值,同时非比较字段 取 最小值这条数据的值。
java">public class WaterSensor {public String id;public Long ts;public Integer vc;// 要提供一个空参的构造器public WaterSensor() {}public WaterSensor(String id, Long ts, Integer vc) {this.id = id;this.ts = ts;this.vc = vc;}}
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<WaterSensor> sensorDS = env.fromElements(new WaterSensor("s1", 10L, 10),new WaterSensor("s1", 20L, 11),new WaterSensor("s1", 30L, 10),new WaterSensor("s2", 40L, 2),new WaterSensor("s3", 50L, 3));KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});SingleOutputStreamOperator<WaterSensor> result = sensorKS.maxBy("vc");// SingleOutputStreamOperator<WaterSensor> result = sensorKS.max("vc");
// SingleOutputStreamOperator<WaterSensor> result = sensorKS.min("vc");// SingleOutputStreamOperator<WaterSensor> result = sensorKS.maxBy("vc");
// SingleOutputStreamOperator<WaterSensor> result = sensorKS.minby("vc");result.print();env.execute();}
reduce
reduce用于对分组完的数据流进行聚合处理,把新输入的数据和当前已经归约出来的数据进行聚合计算,因此每组的第一个元素不会执行reduce操作,需要等待同组的下一个元素到来后再进行计算。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<WaterSensor> sensorDS = env.fromElements(new WaterSensor("s1", 10L, 1),new WaterSensor("s1", 20L, 11),new WaterSensor("s1", 30L, 21),new WaterSensor("s2", 40L, 2),new WaterSensor("s3", 50L, 3));KeyedStream<WaterSensor, String> sensorKS = sensorDS.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});SingleOutputStreamOperator<WaterSensor> reduce = sensorKS.reduce(new ReduceFunction<WaterSensor>() {@Overridepublic WaterSensor reduce(WaterSensor value1, WaterSensor value2) throws Exception {System.out.println("value1=" + value1);System.out.println("value2=" + value2);return new WaterSensor(value1.id, value2.ts, value1.vc + value2.vc);}});reduce.print();env.execute();}
物理分区算子
常见的物理分区策略包含以下几种:随机分区、轮询分区、重缩放,广播,全局分区和自定义分区。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());env.setParallelism(8);DataStreamSource<String> socketDS = env.socketTextStream("192.168.235.130", 8888);// shuffle随机分区socketDS.shuffle().print();// rebalance轮询// 如果是数据源倾斜的场景,调用rebalance,就可以解决数据源的数据倾斜// socketDS.rebalance().print();//rescale缩放:实现轮询,比rebalance更高效// socketDS.rescale().print();// broadcast广播:发送给下游所有的子任务// socketDS.broadcast().print();// global全局:全部发往第一个子任务// socketDS.global().print();// keyby: 按指定key去发送,相同key发往同一个子任务// one-to-one: Forward分区器env.execute();}
富函数
Flink函数类都有对应的Rich版本,例如RichMapFunction、RichFilterFunction、RichReduceFunction等,富函数类与常规函数类的主要区别在于,富函数类可以获取运行环境的上下文,并且拥有生命周期的方法,所以富函数类能够实现更复杂的功能。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());env.setParallelism(3);DataStreamSource<String> source = env.socketTextStream("192.168.235.130", 8888);SingleOutputStreamOperator<Integer> map = source.map(new RichMapFunction<String, Integer>() {@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);System.out.println("子任务编号=" + getRuntimeContext().getIndexOfThisSubtask()+ ",子任务名称=" + getRuntimeContext().getTaskNameWithSubtasks()+ ",调用open()");}@Overridepublic void close() throws Exception {super.close();System.out.println("子任务编号=" + getRuntimeContext().getIndexOfThisSubtask()+ ",子任务名称=" + getRuntimeContext().getTaskNameWithSubtasks()+ ",调用close()");}@Overridepublic Integer map(String value) throws Exception {return Integer.parseInt(value) + 1;}});map.print();env.execute();}
注: 富函数在启动时,open()调用一次,结束时,close()调用一次。
split
split与side output都是分流算子,分流就是定义一些筛选条件,将一条数据流拆分成多条数据流。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<String> source = env.socketTextStream("192.168.235.130", 8888);SingleOutputStreamOperator<String> even = source.filter(value -> Integer.valueOf(value) % 2 == 0);SingleOutputStreamOperator<String> odd = source.filter(value -> Integer.valueOf(value) % 2 == 1);even.print("偶数流");odd.print("奇数流");env.execute();}
split的缺点:每一个数据都要调用两次filter处理,效率低,一般不用。
side output
side output在处理数据流时,可以将数据流中的元素根据条件发送到额外的输出流中,而不需要复制整个数据流。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<String> source = env.socketTextStream("192.168.235.130", 8888);SingleOutputStreamOperator<WaterSensor> map = source.map(new MapFunction<String, WaterSensor>() {@Overridepublic WaterSensor map(String s) throws Exception {String[] data = s.split(",");return new WaterSensor(data[0], Long.valueOf(data[1]), Integer.valueOf(data[1]));}});OutputTag<WaterSensor> tag1 = new OutputTag<>("s1", Types.POJO(WaterSensor.class));OutputTag<WaterSensor> tag2 = new OutputTag<>("s2", Types.POJO(WaterSensor.class));SingleOutputStreamOperator<WaterSensor> process = map.process(new ProcessFunction<WaterSensor, WaterSensor>() {@Overridepublic void processElement(WaterSensor value, Context ctx, Collector<WaterSensor> out) throws Exception {String id = value.getId();if ("s1".equals(id)) {ctx.output(tag1, value);} else if ("s2".equals(id)) {ctx.output(tag2, value);} else {out.collect(value);}}});SideOutputDataStream<WaterSensor> sideOutput1 = process.getSideOutput(tag1);SideOutputDataStream<WaterSensor> sideOutput2 = process.getSideOutput(tag2);process.print("主流");sideOutput1.printToErr("s1");sideOutput2.printToErr("s2");env.execute();}
union(联合)
union是最简单的合流操作,可以直接将多条数据流合在一起,但要求流中的数据类型必须相同,
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<Integer> source1 = env.fromElements(10, 20, 30, 40);DataStreamSource<Integer> source2 = env.fromElements(5, 6, 7, 8);DataStreamSource<String> source3 = env.fromElements("100", "200", "300", "400");// DataStream<Integer> union1 = source1.union(source2, source3.map(value -> Integer.valueOf(value)));DataStream<Integer> union2 = source1.union(source3.map(value -> Integer.valueOf(value)));// union1.print("union1");union2.print("union2");env.execute();}
union的缺点:要求数据类型必须相同,不能改变,缺少灵活性,所以很少用。
connect(连接)
connect每次能连接2条流,流的数据类型可以不一样,两条流连接后可以各自调用函数map、flatmap、process等处理。
java"> public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();environment.setParallelism(2);SingleOutputStreamOperator<Integer> source1 = environment.socketTextStream("192.168.235.130", 9999).map(value -> Integer.valueOf(value));DataStreamSource<String> source2 = environment.socketTextStream("192.168.235.130", 8888);ConnectedStreams<Integer, String> connect = source1.connect(source2);SingleOutputStreamOperator<Object> map = connect.map(new CoMapFunction<Integer, String, Object>() {@Overridepublic Object map1(Integer value) throws Exception {value *= 10;return "来源于数字流"+value.toString();}@Overridepublic Object map2(String value) throws Exception {return "来源于字母流"+value;}});map.print();environment.execute();}