【论文阅读】Densenet:Densely Connected Convolutional Networks 密集连接的卷积网络

news/2024/11/20 9:22:15/

文章目录

  • 前言
  • 一、摘要
  • 二、网络架构
    • 2.1. densenet
    • 2.2. dense block
    • 2.3 与resnet对比
    • 2.4 pytorch代码
  • 三.实验结果
  • 四.结论


前言

从今天开始总结一下之前看的一些深度学习相关的论文。
今天的这篇还是比较经典的论文:密集连接网络。在很多国内的硕士毕业论文里都出现过,作为一个改进的模块。

论文地址:https://arxiv.org/pdf/1608.06993.pdf

在这里插入图片描述

一、摘要

摘要还是完整的截取一张图:
在这里插入图片描述
翻译一下就是:最近的研究表明,如果卷积网络包含接近输入层和接近输出层之间更短的连接,那么它的训练就可以更深入、更准确、更有效。在本文中,我们接受了这一观察结果,并引入了稠密卷积网络(DenseNet),该网络以前馈方式将每一层连接到其他每一层。传统的L层卷积网络有L个连接(每一层和随后的一层之间各有一个连接),而我们的网络有L(L+1) 2个直接连接。对于每一层,前面所有层的特征图被用作输入,它自己的特征图被用作所有后续层的输入。densenet有几个引人注目的优点:它们减轻了梯度消失问题,加强了特征传播,鼓励特征重用,并大大减少了参数的数量。我们在四个高度竞争的目标识别基准任务(CIFAR-10、CIFAR-100、SVHN和ImageNet)上评估了我们提出的体系结构。densenet在大多数技术上获得了显著的改进,同时需要更少的计算来实现高性能。

这咋一看哈,感觉这个模型可用在轻量化的改进上,我的眼睛一下就绿了。接下来我在后面挑一些我觉得的重点内容学一学。

二、网络架构

2.1. densenet

首先是densenet的整体架构:
在这里插入图片描述
主要构成是dense block和transition layers(过渡层)。过渡层包括一个批处理规范化层和一个1×1卷积层,然后是一个2×2平均池化层。

2.2. dense block

在这里插入图片描述
红色打圈的部分就是dense block,然后图的右下角经过了一个过渡层transition layers。dense block内部实行了密集连接。denseblock内部又由各个dense layer组成。

2.3 与resnet对比

resnet和densenet的区别(从公式就可以看出一些端倪):

首先是resnet的连接公式:本层信号和前一层信号相加(用的是➕号)
在这里插入图片描述
然后是densenet的公式:之前所有层信号的叠加(这应该对应torch里的concat操作)
在这里插入图片描述

2.4 pytorch代码

作者的github是https://github.com/liuzhuang13/DenseNet.
但是点进去后发现pytorch版本的代码打不开了,其他caffe,tensorflow等的代码还可以用。

pytorch的代码可以在github上看别人写的:
在这里插入图片描述
总体来说还算比较简单的网络了

三.实验结果

第一次实验:Classification Results on CIFAR and SVHN
结果如下
在这里插入图片描述
总记的话就是四点:
精度高,容量大,参数使用效率高(相同性能参数小),不容易过拟合。

第二次实验:Classification Results on ImageNet
结果如下
在这里插入图片描述
总记的话就是:
densenet的性能与最先进的ResNets相当,同时只用更少的参数和计算就能达到类似的性能。

四.结论

在这里插入图片描述
densenet趋向于随着参数数量的增加而在准确性上不断提高,而没有任何性能退化或过拟合的迹象。在多个设置下,它在几个高度竞争的数据集上实现了最先进的结果。此外,densenet需要更少的参数和更少的计算来实现最先进的性能。由于我们在研究中采用了针对残差网络优化的超参数设置,我们认为,通过对超参数和学习速率调度进行更详细的调整,可以进一步提高densenet的精度。在遵循简单的连接规则的同时,DenseNets自然地集成了身份映射、深度监管和多样化深度的属性。它们允许特征在整个网络中重用,因此可以学习更紧凑的模型,根据我们的实验,也可以学习更精确的模型。由于其紧凑的内部表示和减少的特征冗余,densenet可能是各种基于卷积特征的计算机视觉任务的良好特征提取器,例如,[4,5]。我们计划在未来的工作中利用densenet研究这种特征迁移。

重点看看打粗部分就可以了,根据国内硕士论文的情况,这篇论文可以作为模型轻量化的参考基准文献之一。


http://www.ppmy.cn/news/98483.html

相关文章

ubuntu下搭建opencv环境

一、完全卸载opencv 1. 先到opencv编译安装的目录下 sudo make uninstall cd .. sudo rm -r build 2.上面最后一行命令有的文件夹不存在会有提示,但是不影响,只要把已安装的opencv的include和lib删掉就行,也可以手动删除,总之删…

50 Projects 50 Days - Scroll Animation 学习记录

项目地址 Scroll Animation 展示效果 Scroll Animation 实现思路 HTML结构比较简单,就是10个盒子元素。当鼠标滚动时,盒子分别从左右移动过来。 思路上最开始想到的是给每一个盒子标记一个序号,滚动屏幕后,计算已经划动屏幕的…

配置nginx常用命令

在修改 Nginx 配置文件之后,您需要重新加载或重启 Nginx 以使配置更改生效。具体的命令和方式可能因操作系统和版本而有所不同。 以下是常见的重新加载或重启 Nginx 的方法: 1. 重新加载配置: - 使用 service 命令(适用于 Ub…

leetcode 394. 字符串解码

感觉糊里糊涂的AC了,感觉还要二刷。。。 题目链接leetcode 394 1.题目 给定一个经过编码的字符串,返回它解码后的字符串。 编码规则为: k[encoded_string],表示其中方括号内部的 encoded_string 正好重复 k 次。注意 k 保证为正整数。 你…

HTML基础标签

目录 1.HTML作用 2.HTML 文件基本结构 3.标签层次结构 4.HTML常见标签 标题标签: h1-h6 段落标签: p 换行标签: br 格式化标签 图片标签: img 格式化标签 示例代码: img 标签的其他属性 超链接标签: a 链接的几种形式: 表格标签 列表标签 表单标签 …

中文核心论文写作经验总结和工具推荐

中文核心论文写作经验总结和工具推荐 1 写作问题案例及解决方法1.1 方法介绍部分冗长杂乱1.2 实验结果介绍没有逻辑1.3 文章整体逻辑把握不清1.4 英文过于中式和口水化 2 投稿流程经验3 工具4 总结 1 写作问题案例及解决方法 1.1 方法介绍部分冗长杂乱 自身问题:介…

Sentinel的另外三种流控模式(附代码详细介绍)

前言:大家好,我是小威,24届毕业生,在一家满意的公司实习。本篇文章将详细介绍Sentinel的其他三种流控模式,后续文章将详细介绍Sentinel的其他知识。 如果文章有什么需要改进的地方还请大佬不吝赐教👏&#…

Rocky9-Linux上安装KVM虚拟机

一、案例环境 使用一台物理机器,安装Rocky9-Linux的64位系统,test01是在宿主机kvm中安装的虚拟机 主机 操作系统 IP地址 主要软件 kvm Centos 7 192.168.100.46 KVM test01 Centos 7 192.168.100.32 虚拟机