数学/数论专题:莫比乌斯函数与欧拉函数

news/2024/11/17 19:26:49/

数学/数论专题:莫比乌斯函数与欧拉函数(进阶)

  • 0. 前言
  • 1. 前置知识
  • 2. 正文
  • 3. 总结
  • 4. 参考资料

0. 前言

本篇文章会从狄利克雷卷积的角度,讨论莫比乌斯函数与欧拉函数的相关性质。

或者说就是利用狄利克雷卷积重新证一遍这两个函数的性质以及弄出几个新的式子。

其实我觉得这块还是挺妙的,也可能是我做 DP 和数据结构做疯了(

1. 前置知识

首先您需要知道欧拉函数,狄利克雷卷积,莫比乌斯函数+莫比乌斯反演。

如果不知道,可以搜索别人的博文或者前往我的博文进行学习:

  • 数学/数论专题-学习笔记:欧拉函数
  • 数学/数论专题-学习笔记:狄利克雷卷积
  • 数学/数论专题-学习笔记:莫比乌斯反演

接下来是一些必要的前置知识与性质,有些前面的博文有但是我会再提一遍。

[ A ] [A] [A] 表示 A A A 为真时值为 1,否则为 0。

五类数论函数:

  • 单位(元)函数/元函数 ϵ ( n ) = [ n = 1 ] \epsilon(n)=[n=1] ϵ(n)=[n=1]
  • 常数函数 I ( n ) = 1 I(n)=1 I(n)=1,或者记作 1 ( n ) = 1 1(n)=1 1(n)=1
  • 恒等函数 i d ( n ) = n id(n)=n id(n)=n
  • 欧拉函数 φ ( n ) = ∑ i = 1 n [ gcd ⁡ ( i , n ) = 1 ] \varphi(n)=\sum_{i=1}^{n}[\gcd(i,n)=1] φ(n)=i=1n[gcd(i,n)=1]
  • 莫比乌斯函数 μ ( n ) \mu(n) μ(n)

两个基础定义:

  • 积性函数:对于数论函数 f ( n ) f(n) f(n),若 gcd ⁡ ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1 时有 f ( i j ) = f ( i ) f ( j ) f(ij)=f(i)f(j) f(ij)=f(i)f(j),则 f ( n ) f(n) f(n) 是积性函数。特别的,若 gcd ⁡ ( i , j ) ≠ 1 \gcd(i,j) \ne 1 gcd(i,j)=1 时仍有 f ( i j ) = f ( i ) f ( j ) f(ij)=f(i)f(j) f(ij)=f(i)f(j),那么 f ( n ) f(n) f(n) 是完全积性函数。
  • 逆元:对所有 f ( 1 ) ≠ 0 f(1) \ne 0 f(1)=0 的函数,如果 f ∗ g = ϵ f*g=\epsilon fg=ϵ,那么 g g g f f f 的逆元,记作 f − 1 f^{-1} f1

一个基础性质:

  • f ( n ) , g ( n ) f(n),g(n) f(n),g(n) 是积性函数,则 f ∗ g f*g fg 还是积性函数。
  • 对任意数论函数 f ( n ) f(n) f(n) f ∗ ϵ = f f*\epsilon=f fϵ=f

2. 正文

先看莫比乌斯函数。

首先,莫比乌斯函数有个性质,就是 I ∗ μ = ϵ I*\mu=\epsilon Iμ=ϵ,即 μ = I − 1 \mu=I^{-1} μ=I1

然后令 g = I ∗ f g=I*f g=If,根据 f = f ∗ ϵ = f ∗ I ∗ μ = g ∗ μ f=f*\epsilon=f*I*\mu=g*\mu f=fϵ=fIμ=gμ 我们就得到了莫比乌斯反演的式子。

从狄利克雷卷积角度,很容易证明 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n}\mu(d)=[n=1] dnμ(d)=[n=1],因为 I ∗ μ = ϵ I*\mu=\epsilon Iμ=ϵ 展开就是这个式子。

对于另一个莫比乌斯反演的式子,就是新定义 t = f ⊕ g t=f\oplus g t=fg t ( i ) = ∑ i ∣ n f ( n ) g ( n i ) t(i)=\sum_{i \mid n}f(n)g(\dfrac{n}{i}) t(i)=inf(n)g(in) 然后推式子。

然后就没什么新鲜的性质了。


然后是欧拉函数。

证明一个性质: φ ∗ I = i d \varphi*I=id φI=id,即 ∑ d ∣ n φ ( d ) = n \sum_{d \mid n}\varphi(d)=n dnφ(d)=n

首先因为 φ , I \varphi,I φ,I 都是积性函数,故 φ ∗ I \varphi*I φI 还是积性函数,因此只需要证明 ( φ ∗ I ) ( p k ) = p k (\varphi*I)(p^k)=p^k (φI)(pk)=pk 即可,其中 p p p 是质数, k ≥ 1 k \geq 1 k1

这玩意的证明就是根据 φ ( p k ) = p k − p k − 1 \varphi(p^k)=p^k-p^{k-1} φ(pk)=pkpk1,然后将这个 ( φ ∗ I ) ( p k ) (\varphi*I)(p^k) (φI)(pk) 展开就可证明了。

狄利克雷卷积的优势就在于证明积性函数这一步直接就证完了,没必要暴力展开。


根据这几点开始搞事情,我们发现莫反的展开式与上面欧拉函数的性质展开式貌似很像。

g ( n ) = ∑ d ∣ n f ( d ) ⇒ f ( n ) = ∑ d ∣ n g ( d ) μ ( n d ) , n = ∑ d ∣ n φ ( n ) g(n)=\sum_{d \mid n}f(d)\Rightarrow f(n)=\sum_{d \mid n}g(d)\mu(\dfrac{n}{d}),n=\sum_{d \mid n}\varphi(n) g(n)=dnf(d)f(n)=dng(d)μ(dn),n=dnφ(n)

因此如果将 g g g 替换成 i d id id,将 f f f 替换成 φ \varphi φ,我们发现上述式子依然成立,因为 i d = I ∗ φ id=I*\varphi id=Iφ,然后带入莫反式可得 φ = i d ∗ μ \varphi=id*\mu φ=idμ,这就是 φ \varphi φ μ \mu μ 的关系。

展开一下得到:

φ ( n ) = ∑ d ∣ n d μ ( n d ) \varphi(n)=\sum_{d \mid n}d\mu(\dfrac{n}{d}) φ(n)=dndμ(dn)

另外,变一下得到 φ ( n ) = ∑ d ∣ n n d μ ( d ) \varphi(n)=\sum_{d \mid n}\dfrac{n}{d}\mu(d) φ(n)=dndnμ(d),然后两边同时除以 n n n,得到:

φ ( n ) n = ∑ d ∣ n μ ( d ) d \dfrac{\varphi(n)}{n}=\sum_{d \mid n}\dfrac{\mu(d)}{d} nφ(n)=dndμ(d)

这两个式子可以将 μ \mu μ φ \varphi φ 互相转化(当然可以直接 φ = i d ∗ μ \varphi=id*\mu φ=idμ),顺便消去一个求和符号。

3. 总结

本篇文章从狄利克雷卷积的角度,推理了各种性质,最后得到了 φ = i d ∗ μ \varphi=id*\mu φ=idμ 也就是 φ ( n ) n = ∑ d ∣ n μ ( d ) d \dfrac{\varphi(n)}{n}=\sum_{d \mid n}\dfrac{\mu(d)}{d} nφ(n)=dndμ(d)

4. 参考资料

  • 杜教筛 - pengym - 博客园
  • 【学习笔记】欧拉函数&莫比乌斯函数(概念定理) - star_duster - 博客园

http://www.ppmy.cn/news/850496.html

相关文章

墨卡托投影与瓦片地图

目录 一、开胃小知识 二、墨卡托投影 1、什么是墨卡托投影? 2、墨卡托投影的特点 3、墨卡托投影的缺点 三、瓦片地图 1、GIS介绍 2、瓦片地图原理 四、瓦片地图原理---续 1、经纬度 2、投影 3、瓦片 4、瓦片编号 5、关于中国的经纬度 一、开胃小知识 …

超详细的学习笔记:CSS浮动(附代码示例)

笔记参考b站网课:【前端开发入门教程,web前端零基础html5 css3前端项目视频教程】https://www.bilibili.com/video/BV1Kg411T7t9?p124&vd_source06e5549bf018e111f4275c259292d0da 目录 一、结构伪类选择器 二、伪元素 三、标准流 四、浮动 1、…

闲鱼公布十大转卖理由:“老婆不让”3 年高居榜首,“老公不让”首进前十

本文转载自IT之家 IT之家4月14日消息 4 月 14 日,闲鱼公布十大转卖理由。从 2018 年到现在,“老婆不让”始终高居榜首。比如 “老婆不让钓鱼,再钓老婆就带着孩子回娘家,鱼竿半价处理”“昨天刚买的 Switch 国行版游戏机&#xff…

闲鱼十大转卖理由:“老婆不让”稳居榜首!

3年了, 闲鱼上的“委屈丈夫”越来越多。 4月14日,闲鱼公布十大转卖理由。从2018年到现在,“老婆不让”始终高居榜首。比如“老婆不让钓鱼,再钓老婆就带着孩子回娘家,鱼竿半价处理”“昨天刚买的Switch国行版游戏机&…

2020年中国钓具市场现状分析,出口持续增长,整体企业众多,格局未明「图」

一、钓具产业概述 钓鱼产业以业余休闲为主,更多的重心在于全民参与,因此钓具是产业链的核心。钓具商与饵料商主要承担着为垂钓者提供各类垂钓工具和辅助用具的服务。钓具的种类繁多,主要分为钓鱼竿、鱼钩、渔线轮、鱼线、鱼饵和渔具配件几大…

软件著作权、商事主体、企业域名备案 免费查询

2019独角兽企业重金招聘Python工程师标准>>> 软件著作权查询 http://www.ccopyright.com.cn/cpcc/RRegisterAction.do?methodlist&nofck 专利查询 http://cpquery.sipo.gov.cn/txnPantentInfoList.do?inner-flag:open-typewindow&inner-flag:flowno148059…

找工作么?会坐牢的那种。

很多年轻人,初入职场,确实背景资历不够强,眼界阅历也不够,有时候稀里糊涂就误入歧途了。 这几年新经济全线溃败,幺蛾子的玩意出来不少,各种资金盘游戏,传销,涉赌棋牌,数据…