今天来跟大家分享一下从数据可视化角度看扫黑风暴~
绪论
如何查找视频id
项目结构
制作词云图
制作最近评论数条形图与折线图
制作每小时评论条形图与折线图
制作最近评论数饼图
制作每小时评论饼图
制作观看时间区间评论统计饼图
制作扫黑风暴主演提及占比饼图
制作评论内容情感分析图
评论的时间戳转换为正常时间
评论内容读入CSV
统计一天各个时间段内的评论数
统计最近评论数
爬取评论内容
爬取评论时间
一.爬虫部分
二.数据处理部分
三. 数据分析
绪论
本期是对腾讯热播剧——扫黑风暴的一次爬虫与数据分析,耗时两个小时,总爬取条数3W条评论,总体来说比较普通,值得注意的一点是评论的情绪文本分析处理,这是第一次接触的知识。
爬虫方面:由于腾讯的评论数据是封装在json里面,所以只需要找到json文件,对需要的数据进行提取保存即可。
视频网址:https://v.qq.com/x/cover/mzc00200lxzhhqz.html
评论json数据网址:https://video.coral.qq.com/varticle/7225749902/comment/v2
注:只要替换视频数字id的值,即可爬取其他视频的评论
如何查找视频id?
项目结构:
一. 爬虫部分:
1.爬取评论内容代码:spiders.py
import requests
import re
import randomdef get_html(url, params):uapools = ['Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0','Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14']thisua = random.choice(uapools)headers = {"User-Agent": thisua}r = requests.get(url, headers=headers, params=params)r.raise_for_status()r.encoding = r.apparent_encodingr.encoding = 'utf-8' # 不加此句出现乱码return r.textdef parse_page(infolist, data):commentpat = '"content":"(.*?)"'lastpat = '"last":"(.*?)"'commentall = re.compile(commentpat, re.S).findall(data)next_cid = re.compile(lastpat).findall(data)[0]infolist.append(commentall)return next_ciddef print_comment_list(infolist):j = 0for page in infolist:print('第' + str(j + 1) + '页\n')commentall = pagefor i in range(0, len(commentall)):print(commentall[i] + '\n')j += 1def save_to_txt(infolist, path):fw = open(path, 'w+', encoding='utf-8')j = 0for page in infolist:#fw.write('第' + str(j + 1) + '页\n')commentall = pagefor i in range(0, len(commentall)):fw.write(commentall[i] + '\n')j += 1fw.close()def main():infolist = []vid = '7225749902';cid = "0";page_num = 3000url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'#print(url)for i in range(page_num):params = {'orinum': '10', 'cursor': cid}html = get_html(url, params)cid = parse_page(infolist, html)print_comment_list(infolist)save_to_txt(infolist, 'content.txt')main()
2.爬取评论时间代码:sp.py
import requests
import re
import randomdef get_html(url, params):uapools = ['Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0','Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14']thisua = random.choice(uapools)headers = {"User-Agent": thisua}r = requests.get(url, headers=headers, params=params)r.raise_for_status()r.encoding = r.apparent_encodingr.encoding = 'utf-8' # 不加此句出现乱码return r.textdef parse_page(infolist, data):commentpat = '"time":"(.*?)"'lastpat = '"last":"(.*?)"'commentall = re.compile(commentpat, re.S).findall(data)next_cid = re.compile(lastpat).findall(data)[0]infolist.append(commentall)return next_ciddef print_comment_list(infolist):j = 0for page in infolist:print('第' + str(j + 1) + '页\n')commentall = pagefor i in range(0, len(commentall)):print(commentall[i] + '\n')j += 1def save_to_txt(infolist, path):fw = open(path, 'w+', encoding='utf-8')j = 0for page in infolist:#fw.write('第' + str(j + 1) + '页\n')commentall = pagefor i in range(0, len(commentall)):fw.write(commentall[i] + '\n')j += 1fw.close()def main():infolist = []vid = '7225749902';cid = "0";page_num =3000url = 'https://video.coral.qq.com/varticle/' + vid + '/comment/v2'#print(url)for i in range(page_num):params = {'orinum': '10', 'cursor': cid}html = get_html(url, params)cid = parse_page(infolist, html)print_comment_list(infolist)save_to_txt(infolist, 'time.txt')main()
二.数据处理部分
1.评论的时间戳转换为正常时间 time.py
# coding=gbk
import csv
import timecsvFile = open("data.csv",'w',newline='',encoding='utf-8')
writer = csv.writer(csvFile)
csvRow = []
#print(csvRow)
f = open("time.txt",'r',encoding='utf-8')
for line in f:csvRow = int(line)#print(csvRow)timeArray = time.localtime(csvRow)csvRow = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)print(csvRow)csvRow = csvRow.split()writer.writerow(csvRow)f.close()
csvFile.close()
2.评论内容读入csv CD.py
# coding=gbk
import csv
csvFile = open("content.csv",'w',newline='',encoding='utf-8')
writer = csv.writer(csvFile)
csvRow = []f = open("content.txt",'r',encoding='utf-8')
for line in f:csvRow = line.split()writer.writerow(csvRow)f.close()
csvFile.close()
3.统计一天各个时间段内的评论数 py.py
# coding=gbk
import csvfrom pyecharts import options as opts
from sympy.combinatorics import Subset
from wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile:reader = csv.reader(csvfile)data1 = [str(row[1])[0:2] for row in reader]print(data1)
print(type(data1))#先变成集合得到seq中的所有元素,避免重复遍历
set_seq = set(data1)
rst = []
for item in set_seq:rst.append((item,data1.count(item))) #添加元素及出现个数
rst.sort()
print(type(rst))
print(rst)with open("time2.csv", "w+", newline='', encoding='utf-8') as f:writer = csv.writer(f, delimiter=',')for i in rst: # 对于每一行的,将这一行的每个元素分别写在对应的列中writer.writerow(i)with open('time2.csv') as csvfile:reader = csv.reader(csvfile)x = [str(row[0]) for row in reader]print(x)
with open('time2.csv') as csvfile:reader = csv.reader(csvfile)y1 = [float(row[1]) for row in reader]print(y1)
处理结果(评论时间,评论数)
4.统计最近评论数 py1.py
# coding=gbk
import csvfrom pyecharts import options as opts
from sympy.combinatorics import Subset
from wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile:reader = csv.reader(csvfile)data1 = [str(row[0]) for row in reader]#print(data1)
print(type(data1))#先变成集合得到seq中的所有元素,避免重复遍历
set_seq = set(data1)
rst = []
for item in set_seq:rst.append((item,data1.count(item))) #添加元素及出现个数
rst.sort()
print(type(rst))
print(rst)with open("time1.csv", "w+", newline='', encoding='utf-8') as f:writer = csv.writer(f, delimiter=',')for i in rst: # 对于每一行的,将这一行的每个元素分别写在对应的列中writer.writerow(i)with open('time1.csv') as csvfile:reader = csv.reader(csvfile)x = [str(row[0]) for row in reader]print(x)
with open('time1.csv') as csvfile:reader = csv.reader(csvfile)y1 = [float(row[1]) for row in reader]print(y1)
处理结果(评论时间,评论数)
三. 数据分析
数据分析方面:涉及到了词云图,条形,折线,饼图,后三者是对评论时间与主演占比的分析,然而腾讯的评论时间是以时间戳的形式显示,所以要进行转换,再去统计出现次数,最后,新加了对评论内容的情感分析。
1.制作词云图
wc.py
import numpy as np
import re
import jieba
from wordcloud import WordCloud
from matplotlib import pyplot as plt
from PIL import Image# 上面的包自己安装,不会的就百度f = open('../Spiders/content.txt', 'r', encoding='utf-8') # 这是数据源,也就是想生成词云的数据
txt = f.read() # 读取文件
f.close() # 关闭文件,其实用with就好,但是懒得改了
# 如果是文章的话,需要用到jieba分词,分完之后也可以自己处理下再生成词云
newtxt = re.sub("[A-Za-z0-9\!\%\[\]\,\。]", "", txt)
print(newtxt)
words = jieba.lcut(newtxt)img = Image.open(r'wc.jpg') # 想要搞得形状
img_array = np.array(img)# 相关配置,里面这个collocations配置可以避免重复
wordcloud = WordCloud(background_color="white",width=1080,height=960,font_path="../文悦新青年.otf",max_words=150,scale=10,#清晰度max_font_size=100,mask=img_array,collocations=False).generate(newtxt)plt.imshow(wordcloud)
plt.axis('off')
plt.show()
wordcloud.to_file('wc.png')
轮廓图:wc.jpg
词云图:result.png(注:这里要把英文字母过滤掉)
2.制作最近评论数条形图与折线图 DrawBar.py
# encoding: utf-8
import csv
import pyecharts.options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeTypeclass DrawBar(object):"""绘制柱形图类"""def __init__(self):"""创建柱状图实例,并设置宽高和风格"""self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.LIGHT))def add_x(self):"""为图形添加X轴数据"""with open('time1.csv') as csvfile:reader = csv.reader(csvfile)x = [str(row[0]) for row in reader]print(x)self.bar.add_xaxis(xaxis_data=x,)def add_y(self):with open('time1.csv') as csvfile:reader = csv.reader(csvfile)y1 = [float(row[1]) for row in reader]print(y1)"""为图形添加Y轴数据,可添加多条"""self.bar.add_yaxis( # 第一个Y轴数据series_name="评论数", # Y轴数据名称y_axis=y1, # Y轴数据label_opts=opts.LabelOpts(is_show=True,color="black"), # 设置标签bar_max_width='100px', # 设置柱子最大宽度)def set_global(self):"""设置图形的全局属性"""#self.bar(width=2000,height=1000)self.bar.set_global_opts(title_opts=opts.TitleOpts( # 设置标题title='扫黑风暴近日评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)),tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的东西)is_show=True, # 是否显示提示框trigger="axis", # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息)axis_pointer_type="cross" # 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全)),toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具))def draw(self):"""绘制图形"""self.add_x()self.add_y()self.set_global()self.bar.render('../Html/DrawBar.html') # 将图绘制到 test.html 文件内,可在浏览器打开def run(self):"""执行函数"""self.draw()if __name__ == '__main__':app = DrawBar()app.run()
效果图:DrawBar.html
3.制作每小时评论条形图与折线图 DrawBar2.py
# encoding: utf-8
# encoding: utf-8
import csv
import pyecharts.options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeTypeclass DrawBar(object):"""绘制柱形图类"""def __init__(self):"""创建柱状图实例,并设置宽高和风格"""self.bar = Bar(init_opts=opts.InitOpts(width='1500px', height='700px', theme=ThemeType.MACARONS))def add_x(self):"""为图形添加X轴数据"""str_name1 = '点'with open('time2.csv') as csvfile:reader = csv.reader(csvfile)x = [str(row[0] + str_name1) for row in reader]print(x)self.bar.add_xaxis(xaxis_data=x)def add_y(self):with open('time2.csv') as csvfile:reader = csv.reader(csvfile)y1 = [int(row[1]) for row in reader]print(y1)"""为图形添加Y轴数据,可添加多条"""self.bar.add_yaxis( # 第一个Y轴数据series_name="评论数", # Y轴数据名称y_axis=y1, # Y轴数据label_opts=opts.LabelOpts(is_show=False), # 设置标签bar_max_width='50px', # 设置柱子最大宽度)def set_global(self):"""设置图形的全局属性"""#self.bar(width=2000,height=1000)self.bar.set_global_opts(title_opts=opts.TitleOpts( # 设置标题title='扫黑风暴各时间段评论统计',title_textstyle_opts=opts.TextStyleOpts(font_size=35)),tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的东西)is_show=True, # 是否显示提示框trigger="axis", # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息)axis_pointer_type="cross" # 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全)),toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具))def draw(self):"""绘制图形"""self.add_x()self.add_y()self.set_global()self.bar.render('../Html/DrawBar2.html') # 将图绘制到 test.html 文件内,可在浏览器打开def run(self):"""执行函数"""self.draw()if __name__ == '__main__':app = DrawBar()app.run()
效果图:DrawBar2.html
4.制作最近评论数饼图 pie_pyecharts.py
import csvfrom pyecharts import options as opts
from pyecharts.charts import Pie
from random import randintfrom pyecharts.globals import ThemeTypewith open('time1.csv') as csvfile:reader = csv.reader(csvfile)x = [str(row[0]) for row in reader]print(x)
with open('time1.csv') as csvfile:reader = csv.reader(csvfile)y1 = [float(row[1]) for row in reader]print(y1)num = y1
lab = x
(Pie(init_opts=opts.InitOpts(width='1700px',height='450px',theme=ThemeType.LIGHT))#默认900,600.set_global_opts(title_opts=opts.TitleOpts(title="扫黑风暴近日评论统计",title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(pos_top="10%", pos_left="1%",# 图例位置调整),).add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图.add(series_name='',center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图.add(series_name='', center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图
).render('../Html/pie_pyecharts.html')
效果图
5.制作每小时评论饼图 pie_pyecharts2.py
import csvfrom pyecharts import options as opts
from pyecharts.charts import Pie
from random import randintfrom pyecharts.globals import ThemeTypestr_name1 = '点'with open('time2.csv') as csvfile:reader = csv.reader(csvfile)x = [str(row[0]+str_name1) for row in reader]print(x)
with open('time2.csv') as csvfile:reader = csv.reader(csvfile)y1 = [int(row[1]) for row in reader]print(y1)num = y1
lab = x
(Pie(init_opts=opts.InitOpts(width='1650px',height='500px',theme=ThemeType.LIGHT,))#默认900,600.set_global_opts(title_opts=opts.TitleOpts(title="扫黑风暴每小时评论统计",title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(pos_top="8%", pos_left="4%",# 图例位置调整),).add(series_name='',center=[250, 300], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图.add(series_name='',center=[810, 300],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图.add(series_name='', center=[1350, 300],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图
).render('../Html/pie_pyecharts2.html')
效果图
6.制作观看时间区间评论统计饼图 pie_pyecharts3.py
# coding=gbk
import csvfrom pyecharts import options as opts
from pyecharts.globals import ThemeType
from sympy.combinatorics import Subset
from wordcloud import WordCloudwith open('../Spiders/data.csv') as csvfile:reader = csv.reader(csvfile)data2 = [int(row[1].strip('')[0:2]) for row in reader]#print(data2)
print(type(data2))#先变成集合得到seq中的所有元素,避免重复遍历
set_seq = set(data2)
list = []
for item in set_seq:list.append((item,data2.count(item))) #添加元素及出现个数
list.sort()
print(type(list))
#print(list)with open("time2.csv", "w+", newline='', encoding='utf-8') as f:writer = csv.writer(f, delimiter=',')for i in list: # 对于每一行的,将这一行的每个元素分别写在对应的列中writer.writerow(i)n = 4 #分成n组
m = int(len(list)/n)
list2 = []
for i in range(0, len(list), m):list2.append(list[i:i+m])print("凌晨 : ",list2[0])
print("上午 : ",list2[1])
print("下午 : ",list2[2])
print("晚上 : ",list2[3])with open('time2.csv') as csvfile:reader = csv.reader(csvfile)y1 = [int(row[1]) for row in reader]print(y1)n =6
groups = [y1[i:i + n] for i in range(0, len(y1), n)]print(groups)x=['凌晨','上午','下午','晚上']
y1=[]
for y1 in groups:num_sum = 0for groups in y1:num_sum += groupsprint(x)
print(y1)import csvfrom pyecharts import options as opts
from pyecharts.charts import Pie
from random import randintstr_name1 = '点'num = y1
lab = x
(Pie(init_opts=opts.InitOpts(width='1500px',height='450px',theme=ThemeType.LIGHT))#默认900,600.set_global_opts(title_opts=opts.TitleOpts(title="扫黑风暴观看时间区间评论统计", title_textstyle_opts=opts.TextStyleOpts(font_size=30)),legend_opts=opts.LegendOpts(pos_top="8%", # 图例位置调整),).add(series_name='',center=[260, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图.add(series_name='',center=[1230, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图.add(series_name='', center=[750, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图
).render('../Html/pie_pyecharts3.html')
效果图
7.制作扫黑风暴主演提及占比饼图 pie_pyecharts4.py
import csvimport numpy as np
import re
import jieba
from matplotlib.pyplot import scatter
from wordcloud import WordCloud
from matplotlib import pyplot as plt
from PIL import Image# 上面的包自己安装,不会的就百度f = open('../Spiders/content.txt', 'r', encoding='utf-8') # 这是数据源,也就是想生成词云的数据
words = f.read() # 读取文件
f.close() # 关闭文件,其实用with就好,但是懒得改了name=["孙红雷","张艺兴","刘奕君","吴越","王志飞","刘之冰","江疏影"]print(name)
count=[float(words.count("孙红雷")),float(words.count("艺兴")),float(words.count("刘奕君")),float(words.count("吴越")),float(words.count("王志飞")),float(words.count("刘之冰")),float(words.count("江疏影"))]
print(count)import csvfrom pyecharts import options as opts
from pyecharts.charts import Pie
from random import randintfrom pyecharts.globals import ThemeTypenum = count
lab = name
(Pie(init_opts=opts.InitOpts(width='1650px',height='450px',theme=ThemeType.LIGHT))#默认900,600.set_global_opts(title_opts=opts.TitleOpts(title="扫黑风暴主演提及占比",title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(pos_top="3%", pos_left="33%",# 图例位置调整),).add(series_name='',center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图.add(series_name='',center=[800, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=['40%','75%'])#环图.add(series_name='', center=[1300, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype='radius')#南丁格尔图
).render('../Html/pie_pyecharts4.html')
效果图
8.评论内容情感分析 SnowNLP.py
import numpy as np
from snownlp import SnowNLP
import matplotlib.pyplot as pltf = open('../Spiders/content.txt', 'r', encoding='UTF-8')
list = f.readlines()
sentimentslist = []
for i in list:s = SnowNLP(i)print(s.sentiments)sentimentslist.append(s.sentiments)
plt.hist(sentimentslist, bins=np.arange(0, 1, 0.01), facecolor='g')
plt.xlabel('Sentiments Probability')
plt.ylabel('Quantity')
plt.title('Analysis of Sentiments')
plt.show()
效果图(情感各分数段出现频率)SnowNLP情感分析是基于情感词典实现的,其简单的将文本分为两类,积极和消极,返回值为情绪的概率,也就是情感评分在[0,1]之间,越接近1,情感表现越积极,越接近0,情感表现越消极。
推荐阅读:入门: 最全的零基础学Python的问题 | 零基础学了8个月的Python | 实战项目 |学Python就是这条捷径干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 | 从万众期待到口碑扑街!唐探3令人失望 | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影趣味:弹球游戏 | 九宫格 | 漂亮的花 | 两百行Python《天天酷跑》游戏!AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!| 再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|年度爆款文案1).卧槽!Pdf转Word用Python轻松搞定!2).学Python真香!我用100行代码做了个网站,帮人PS旅行图片,赚个鸡腿吃3).首播过亿,火爆全网,我分析了《乘风破浪的姐姐》,发现了这些秘密 4).80行代码!用Python做一个哆来A梦分身 5).你必须掌握的20个python代码,短小精悍,用处无穷 6).30个Python奇淫技巧集 7).我总结的80页《菜鸟学Python精选干货.pdf》,都是干货 8).再见Python!我要学Go了!2500字深度分析!9).发现一个舔狗福利!这个Python爬虫神器太爽了,自动下载妹子图片
点阅读原文,领AI全套资料!