-
一、大体流程
Shuffle描述的是数据从Map端到Reduce端的过程,大致分为排序(sort)、溢写(spill)、合并(merge)、拉取拷贝(Copy)、合并排序(merge sort)这几个过程。
-
1、sort
Map端的输出数据,先写环形缓存区kvbuffer,当环形缓冲区到达一个阀值(可以通过配置文件设置,默认80),便要开始溢写,但溢写之前会有一个sort操作,这个sort操作先把Kvbuffer中的数据按照partition值和key两个关键字来排序,移动的只是索引数据,排序结果是Kvmeta中数据按照partition为单位聚集在一起,同一partition内的按照key有序。
-
2、spill
当排序完成,便开始把数据刷到磁盘,刷磁盘的过程以分区为单位,一个分区写完,写下一个分区,分区内数据有序,最终实际上会多次溢写,然后生成多个文件。
-
3、merge
spill会生成多个小文件,对于Reduce端拉取数据是相当低效的,那么这时候就有了merge的过程,合并的过程也是同分片的合并成一个片段(segment),最终所有的segment组装成一个最终文件,那么合并过程就完成了,如下图所示
-
1、fetch copy
Reduce任务通过向各个Map任务拉取对应分片。这个过程都是以Http协议完成,每个Map节点都会启动一个常驻的HTTP server服务,Reduce节点会请求这个Http Server拉取数据,这个过程完全通过网络传输,所以是一个非常重量级的操作。
-
2、merge-sort
Reduce端,拉取到各个Map节点对应分片的数据之后,会进行再次排序,排序完成,结果丢给Reduce函数进行计算。
-
1、shuffle过程就是为了对key进行全局聚合
-
2、排序操作伴随着整个shuffle过程,所以Hadoop的shuffle是sort-based的