克罗内克积(Kronecker)

news/2024/10/31 3:19:41/

克罗内克积定义

 克罗内克积是两个任意大小的矩阵间的运算,它是张量积的特殊形式。给定两个矩阵 A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n B ∈ R p × q \boldsymbol{B} \in \mathbb{R}^{p \times q} BRp×q,则这两个矩阵的克罗内克积是一个在空间 R m p × n q \mathbb{R}^{mp \times nq} Rmp×nq的分块矩阵 A ⊗ B = [ a 11 B ⋯ a 1 n B ⋮ ⋱ ⋮ a m 1 B ⋯ a m n B ] \boldsymbol{A}\otimes\boldsymbol{B}=\left[\begin{array}{ccc}a_{11}\boldsymbol{B}&\cdots & a_{1n}\boldsymbol{B}\\\vdots&\ddots&\vdots\\a_{m1}\boldsymbol{B}&\cdots&a_{mn}\boldsymbol{B}\end{array}\right] AB=a11Bam1Ba1nBamnB更具体的可以表示为 A ⊗ B = [ a 11 b 11 a 11 b 12 ⋯ a 11 b 1 q ⋯ ⋯ a 1 n b 11 a 1 n b 12 ⋯ a 1 n b 1 q a 11 b 21 a 11 b 22 ⋯ a 11 b 2 q ⋯ ⋯ a 1 n b 21 a 1 n b 22 ⋯ a 1 n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a 11 b p 1 a 11 b p 2 ⋯ a 11 b p q ⋯ ⋯ a 1 n b p 1 a 1 n b p 2 ⋯ a 1 n b p q ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ a m 1 b 11 a m 1 b 12 ⋯ a m 1 b 1 q ⋯ ⋯ a m n b 11 a m n b 12 ⋯ a m n b 1 q a m 1 b 21 a m 1 b 22 ⋯ a m 1 b 2 q ⋯ ⋯ a m n b 21 a m n b 22 ⋯ a m n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a m 1 b p 1 a m 1 b p 2 ⋯ a m 1 b p q ⋯ ⋯ a m n b p 1 a m n b p 2 ⋯ a m n b p q ] \boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{ccccccccc} a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1 q} & \cdots & \cdots & a_{1 n} b_{11} & a_{1 n} b_{12} & \cdots & a_{1 n} b_{1 q} \\ a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2 q} & \cdots & \cdots & a_{1 n} b_{21} & a_{1 n} b_{22} & \cdots & a_{1 n} b_{2 q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{11} b_{p 1} & a_{11} b_{p 2} & \cdots & a_{11} b_{p q} & \cdots & \cdots & a_{1 n} b_{p 1} & a_{1 n} b_{p 2} & \cdots & a_{1 n} b_{p q} \\ \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\ a_{m 1} b_{11} & a_{m 1} b_{12} & \cdots & a_{m 1} b_{1 q} & \cdots & \cdots & a_{m n} b_{11} & a_{m n} b_{12} & \cdots & a_{m n} b_{1 q} \\ a_{m 1} b_{21} & a_{m 1} b_{22} & \cdots & a_{m 1} b_{2 q} & \cdots & \cdots & a_{m n} b_{21} & a_{m n} b_{22} & \cdots & a_{m n} b_{2 q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{m 1} b_{p 1} & a_{m 1} b_{p 2} & \cdots & a_{m 1} b_{p q} & \cdots & \cdots & a_{m n} b_{p 1} & a_{m n} b_{p 2} & \cdots & a_{m n} b_{p q} \end{array}\right] AB=a11b11a11b21a11bp1am1b11am1b21am1bp1a11b12a11b22a11bp2am1b12am1b22am1bp2a11b1qa11b2qa11bpqam1b1qam1b2qam1bpqa1nb11a1nb21a1nbp1amnb11amnb21amnbp1a1nb12a1nb22a1nbp2amnb12amnb22amnbp2a1nb1qa1nb2qa1nbpqamnb1qamnb2qamnbpq

克罗内克积性质

 克罗内克积满足如下性质:

  • 结合律: ( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) (\boldsymbol{A}\otimes\boldsymbol{B})\otimes\boldsymbol{C}=\boldsymbol{A}\otimes(\boldsymbol{B}\otimes\boldsymbol{C}) (AB)C=A(BC)
  • 分配律: A ⊗ ( B + C ) = A ⊗ B + A ⊗ C \boldsymbol{A}\otimes(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A}\otimes \boldsymbol{B}+\boldsymbol{A}\otimes\boldsymbol{C}\quad\quad A(B+C)=AB+AC ( A + B ) ⊗ C = A ⊗ C + B ⊗ C (\boldsymbol{A}+\boldsymbol{B})\otimes\boldsymbol{C}=\boldsymbol{A}\otimes\boldsymbol{C}+\boldsymbol{B}\otimes\boldsymbol{C} (A+B)C=AC+BC
  • 双线性: ( k A ) ⊗ B = A ⊗ ( k B ) = k ( A ⊗ B ) (k\boldsymbol{A})\otimes\boldsymbol{B}=\boldsymbol{A}\otimes(k\boldsymbol{B})=k(\boldsymbol{A}\otimes\boldsymbol{B}) (kA)B=A(kB)=k(AB)
  • 转置: ( A ⊗ B ) ⊤ = A ⊤ ⊗ B ⊤ (\boldsymbol{A} \otimes \boldsymbol{B})^{\top}=\boldsymbol{A}^{\top} \otimes \boldsymbol{B}^{\top} (AB)=AB
  • 混合乘积性:如果 A , B , C , D \boldsymbol{A,B,C,D} A,B,C,D是四个矩阵,且矩阵乘积 A C \boldsymbol{AC} AC B D \boldsymbol{BD} BD存在,那么 ( A ⊗ B ) ( C ⊗ D ) = A C ⊗ B D (\boldsymbol{A}\otimes\boldsymbol{B})(\boldsymbol{C}\otimes\boldsymbol{D})=\boldsymbol{AC}\otimes\boldsymbol{BD} (AB)(CD)=ACBD这个性质称为“混合乘积性质”,因为它混合了矩阵乘积和克罗内克积。可以推出, A ⊗ B \boldsymbol{A}\otimes\boldsymbol{B} AB是可逆的当且仅当 A \boldsymbol{A} A B \boldsymbol{B} B是可逆的,其逆矩阵为 ( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 (\boldsymbol{A}\otimes\boldsymbol{B})^{-1}=\boldsymbol{A}^{-1}\otimes\boldsymbol{B}^{-1} (AB)1=A1B1
  • v e c ( a b ⊤ ) = b ⊗ a vec(\bm{ab}^{\top})=\bm{b} \otimes \bm{a} vec(ab)=ba

克罗内克积实例

实例1

[ 1 2 3 1 ] ⊗ [ 0 3 2 1 ] = [ 1 ⋅ 0 1 ⋅ 3 2 ⋅ 0 2 ⋅ 3 1 ⋅ 2 1 ⋅ 1 2 ⋅ 2 2 ⋅ 1 3 ⋅ 0 3 ⋅ 3 1 ⋅ 0 1 ⋅ 3 3 ⋅ 2 3 ⋅ 1 1 ⋅ 2 1 ⋅ 1 ] = [ 0 3 0 6 2 1 4 2 0 9 0 3 6 3 2 1 ] \left[\begin{array}{ll} 1 & 2 \\ 3 & 1 \end{array}\right] \otimes\left[\begin{array}{ll} 0 & 3 \\ 2 & 1 \end{array}\right]=\left[\begin{array}{llll} 1 \cdot 0 & 1 \cdot 3 & 2 \cdot 0 & 2 \cdot 3 \\ 1 \cdot 2 & 1 \cdot 1 & 2 \cdot 2 & 2 \cdot 1 \\ 3 \cdot 0 & 3 \cdot 3 & 1 \cdot 0 & 1 \cdot 3 \\ 3 \cdot 2 & 3 \cdot 1 & 1 \cdot 2 & 1 \cdot 1 \end{array}\right]=\left[\begin{array}{llll} 0 & 3 & 0 & 6 \\ 2 & 1 & 4 & 2 \\ 0 & 9 & 0 & 3 \\ 6 & 3 & 2 & 1 \end{array}\right] [1321][0231]=10123032131133312022101223211311=0206319304026231

实例2

[ a 11 a 12 a 21 a 22 a 31 a 32 ] ⊗ [ b 11 b 12 b 13 b 21 b 22 b 23 ] = [ a 11 b 11 a 11 b 12 a 11 b 13 a 12 b 11 a 12 b 12 a 12 b 13 a 11 b 21 a 11 b 22 a 11 b 23 a 12 b 21 a 12 b 22 a 12 b 23 a 21 b 11 a 21 b 12 a 21 b 13 a 22 b 11 a 22 b 12 a 22 b 13 a 21 b 21 a 21 b 22 a 21 b 23 a 22 b 21 a 22 b 22 a 22 b 23 a 31 b 11 a 31 b 12 a 31 b 13 a 32 b 11 a 32 b 12 a 32 b 13 a 31 b 21 a 31 b 22 a 31 b 23 a 32 b 21 a 32 b 22 a 32 b 23 ] \left[\begin{array}{l} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right] \otimes\left[\begin{array}{lll} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{array}\right]=\left[\begin{array}{llllll} a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} & a_{12} b_{11} & a_{12} b_{12} & a_{12} b_{13} \\ a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} & a_{12} b_{21} & a_{12} b_{22} & a_{12} b_{23} \\ a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} & a_{22} b_{11} & a_{22} b_{12} & a_{22} b_{13} \\ a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} & a_{22} b_{21} & a_{22} b_{22} & a_{22} b_{23} \\ a_{31} b_{11} & a_{31} b_{12} & a_{31} b_{13} & a_{32} b_{11} & a_{32} b_{12} & a_{32} b_{13} \\ a_{31} b_{21} & a_{31} b_{22} & a_{31} b_{23} & a_{32} b_{21} & a_{32} b_{22} & a_{32} b_{23} \end{array}\right] a11a21a31a12a22a32[b11b21b12b22b13b23]=a11b11a11b21a21b11a21b21a31b11a31b21a11b12a11b22a21b12a21b22a31b12a31b22a11b13a11b23a21b13a21b23a31b13a31b23a12b11a12b21a22b11a22b21a32b11a32b21a12b12a12b22a22b12a22b22a32b12a32b22a12b13a12b23a22b13a22b23a32b13a32b23


http://www.ppmy.cn/news/393236.html

相关文章

NLP学习笔记十二-skip-gram模型求解

NLP学习笔记十一-skip-gram模型求解 上一篇文章,我们见到了skip-gram模型的原理,这里我们在陈述一下skip-gram模型其实是基于分布相似性原理来设计的,在skip-gram模型中,他认为一个词的内涵可以由他的上下文文本信息来概括&#…

连通性可预测深部脑刺激(DBS)对帕金森的疗效

深部脑刺激(DBS)对帕金森病(PD)的疗效可能取决于刺激部位与其他脑区之间的连通性,但是刺激哪些脑区,以及脑区间连通性是否能够预测患者的预后,仍然未知。在这里,我们确定了有效的DBS…

四甲基罗丹明二苯基环辛炔DBCO-TAMRA,TAMRA-DBCO,TAMRA DBCO与叠氮化合物通过无铜反应

英文名称:DBCO-TAMRA;TAMRA-DBCO 中文名称:四甲基罗丹明二苯基环辛炔 分子式:C54H57N5O10 分子量: 936.09 外观:深红色粉末 溶解性:DMSO, DMF, DCM, THF, Chloroform 纯度:>95% (HPLC) 结构式: 简介&#xf…

敏捷已死?

作者 | SCOTT MIDDLETON 译者 | 弯月 责编 | 王晓曼 出品 | CSDN(ID:CSDNnews) 敏捷运动从根本上改变了科技公司的运营方式,是Google、Facebook 和Airbnb 等一系列科技公司成功背后的核心推动力。然而,时隔二十年&…

5 Tamra Tyramide属于四甲基罗丹明 (TAMRA) 化物,5-四甲基罗丹明-酪酰胺

5-Tamra-Tyramide简述 TSA主要原理是利用酪胺Tyramide的过氧化物酶反应(酪胺盐在HRP催化H202下形成共价键结合位点),产生大量的酶促产物 该产物能与周围的蛋白残基(包括色氨酸、组氨酸和酪氨酸残基)结合,这样在抗原-结合部位就有大量的生物素沉积&…

Maleimide-PEG-Amine,马来酰亚胺PEG氨基,MAL-PEG2k-NH2用于造影剂

Maleimide-PEG-Amine,马来酰亚胺PEG氨基,MAL-PEG2k-NH2用于造影剂 马来酰亚胺-PEG-胺(Mal-PEG-NH2)是一种线性异双功能PEG试剂,通常用作交联剂或两种不同化学实体之间的间隔物。 MAL-PEG-NH2(PEG分子量为2000 Da,MAL是6-(马来酰亚胺基)己酸琥…

20位顶级设计师的桌面环境

摘要 对一个设计师来说,用来办公的桌面环境的重要性远远超过其他行业,那么看看包括 Dribbble 联合创始人和 Twitter 设计师等在内的 20 位英、美顶尖设计师他们的桌面环境都是怎样的吧。 对设计师来说,其办公时间绝大部分都是在办公桌前&…

钙通道阻滞剂/拮抗剂的应用

我们都知道钙、钾、钠离子对于维持个体内环境的重要性,离子通道一直是个有趣而复杂的话题。它们就像为某种物质专属定制的“门”或 VIP 通道,不仅分类繁多,还有着严密的“门控”机制。每个细胞都像一个电池,正常状态下&#xff0c…