【算法基础】一篇文章彻底弄懂Dijkstra算法|多图解+代码详解

news/2025/2/11 22:39:40/

在这里插入图片描述

  • 博主简介:努力学习的大一在校计算机专业学生,热爱学习和创作。目前在学习和分享:算法、数据结构、Java等相关知识。
  • 博主主页: @是瑶瑶子啦
  • 所属专栏: 算法 ;该专栏专注于蓝桥杯和ACM等算法竞赛🔥
  • 近期目标:写好专栏的每一篇文章

在这里插入图片描述

目录

  • 一、简介
  • 二、基本思想策略
  • 三、代码实现
        • 输入格式
        • 输出格式
        • 数据范围
    • 3.1伪代码详解
    • 3.2源代码详解
    • 3.4:数据结构优化
    • 3.3:算法分析
  • 四、使用小根堆来优化Dijkstra算法
  • 五、深入和反思

一、简介

Dijkstra算法适用于最短路问题中,单源最短路(只有一个起点),并且每条边的权重都是正数的情况

二、基本思想策略

首先假定源点为u(就是起点),顶点集合V被划分为两部分:集合 S 和 V-S。 初始时S中仅含有源点u,其中S中的顶点到源点的最短路径已经确定
集合S 和V-S中所包含的顶点到源点的最短路径的长度待定,称从源点出发只经过S中的点到达V-S中的点的路径为特殊路径(不一定是最短的)
并用dist[]记录当前每个顶点对应的最短特殊路径长度。

红色顶点是S集合中,均已经确定最短路径的点,而绿色的是V-S集合中没有确定该顶点到源点最短路径的点。我们可以看到只经过S中的点到绿色点有两条特殊路径:15+2020+10,但是只有一条最短路径:15+20,那么绿色点就当前情况来看,可以暂时把它的dist[i]更新为25,但是一定是最短特殊路径吗?不一定,为什么呢?我们接下来往下看

在这里插入图片描述
可以看到,V-S集合中假设存在一点T,经过这点到目的点的距离,很有可能是目的点真正的dist!
在这里插入图片描述

可能这里可能有点晕,没错。上面只是一个大概的介绍,我们接下来彻底揭开它的神秘面纱。

选择特殊路径长度最短的路径,将其连接的V-S中的顶点加入到集合S中,同时更新数组dist[](核心)。一旦S包含了所有顶点,dist[]就是从源到所有其他顶点的最短路径长度

数据结构: h[N],e[M],ne[M],w[M]构建带权重的邻接表,来存储图;int dist[N];//dist 数组保存源点到其余各个节点的距离

(1)初始化。令集合S={0},对于集合V-S中的所有顶点x{1,2,3…n};初始化dist数组memset(dist, 0x3f, sizeof(dist));//dist 数组的各个元素为无穷大,

(2)找最小在集合V-S中依照贪心策略来寻找使得dist[j]具有最小值的顶点t,即dist[t]=min,则顶点t就是集合V-S中距离源点u最近的顶点。
(3)加入S战队。将顶点t加入集合S,同时更新V-S
(4)借东风。在(2)中已近找到了源点到t的最短路径,那么对集合V-S中所有与顶点t相邻的顶点j,都可以借助t走捷径。
如果dist[i] = min(dist[i], dist[t] + w[j]);//更新 dist[j],转(2)。

光凭这个好像是这么回事,但是细节值得推敲。这个题的本质还是贪心。
比如只看刚刚的文字,不仔细分析,你能不能解决我开头提出的那个问题?
为什么这么说呢。因为在目前(局部情况)来看,确实找到最短特殊路径了,竟然就直接加入S战队,不太可取,就像我开头提出的,在V-S集合中,万一存在一个点,经过这个点再到目的点,很有可能才是真正的最短距离。
那为什么这个算法是可取的呢?
巧就巧在,最外层循环,遍历了整个顶点,并且并不是说,一旦该顶点加入了S战队,它的dist就不能变了,相反,它在实时更新!。当循环遍历到绿色顶点T时,会更新与它相连节点的dist。
不知道有没有get到我的意思,虽然我没有用公式啥的去推导,我个人也非常讨厌那种不人性化的方式,更喜欢用一种形象的,意会的方式去理解。

综上,由局部最优,到全局最优,这种贪心的策略,完全可以保证全部遍历和循环后,dist[]数组中存的就是该点到源点的最短距离!!!(上面是我个人的理解,欢迎一起讨论交流和学习捏!)

三、代码实现

这里是AcWing 849.Dijkstra求最短路 I模板题目

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围

1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

3.1伪代码详解

int dist[N],state[N];
dist[1] = 0,state = 1;//把源点加入S集合
for (i : 1~n)
{1),t<-找最小,找到只经过S中的点到V-S集合中某一点,距离最小的那个V-S中的那个点2),state[t] = 1;将t加入到S战队3),更新与t顶点相邻点的dist}

3.2源代码详解

#include<iostream>
#include<cstring>
#include<algorithm>using namespace std;//N是顶点数,M是边数
const int N =510,M = 100010;
int h[N],e[M],ne[M],w[M],idx;//邻接表存储图,w[M]存储边的权重
int state[N];//state记录是否找到了源点到该节点的最短距离
int dist[N];//dist保存源点到其余各个顶点的最短特殊距离
int n,m;//图的顶点数和边数void add(int a,int b,int c)//插入边,并给每个边赋值权重
{e[idx] = b, w[idx] = c, ne[idx] = h[a],h[a] = idx++;
}
//key:核心和关键部分!!!
void Dijkstra()
{memset(dist,0x3f,sizeof(dist));// 1)初始化dist数组dist[1] = 0;//源点到源点的距离当然是0for (int i = 0; i < n; i++)//对n个顶点进行n次遍历(一开始V-S集合为n个元素,S集合是0个,肯定是遍历n次,才能完全遍历完{int t = -1;//t存储当前这次遍历到的V-S集合中的点,该点当前局部情况距离源点距离最小的那个点//2)在V-S中 找最小for (int j = 1; j <= n; j++){if(!state[j] && (t == -1 || dist[j] < dist[t]))t = j;}state[t] = 1;//3)加入S 战队//3)借东风for (int j = h[t];j != -1; j = ne[j]){int i = e[j];dist[i] = min(dist[i],dist[t]+w[j]);//更新dist[j]}                                                    }
}int main(){memset (h,-1,sizeof (h));//初始化邻接表cin >> n >>m;while (m--)//读入m条边{int a,b,w;cin >> a >> b >> w;add (a,b,w);}Dijkstra();if (dist[n] != 0x3f3f3f3f)//如果dist[n]被更新了,那么一定存在从1号节点到n号节点的最短距离路径cout << dist[n];elsecout << "-1";
}

关于存储图的适合,没有考虑重边和自环的影响?

因为在第三步更新的时候,即使邻接表那条单链上有两个一样编号的节点,但是第三步更新的时候,还是会让对应编号节点的dist为最小。所以即使有重边也不影响

3.4:数据结构优化

上面我们是采用邻接表来存储图,邻接表的原理如下。邻接表是适合稀疏图,当边比较多,也就是稠密图时,我们采用邻接矩阵来存储图。即g[a][b]的值为编号为a的节点a到编号为b的节点b之间的距离。

在这里插入图片描述
在这里插入图片描述

使用邻接矩阵,注意去重边,因为邻接矩阵只允许a→b的距离唯一。

#include <cstring>
#include <iostream>
#include <algorithm>using namespace std;const int N = 510;int n,m;int g[N][N];//邻接矩阵存储图
int dist[N];
bool st[N];int dijkstra(){memset(dist,0x3f,sizeof(dist)); dist[1] = 0;for(int i = 0; i < n; i++){int t = -1;for (int j = 1; j <= n; j ++)if (!st[j] && (t == -1|| dist[t] > dist[j]))t = j;st[t] = true;for (int j = 1; j <= n; j++)dist[j] = min(dist[j],dist[t] + g[t][j]);}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}int main(){scanf("%d%d",&n,&m);memset(g,0x3f,sizeof g);//初始化邻接矩阵while(m--){int a,b,c;scanf("%d%d%d",&a,&b,&c);g[a][b] = min(g[a][b],c);//去除重边}int t = dijkstra();printf("%d\n",t);return 0;
}

3.3:算法分析

算法时间复杂度:时间复杂是 O(n2+m)O(n2+m), n 表示点数,m表示边数

耗时的主要地方在于第2)步,找最小,每次都需要遍历一遍dist数组,完全没有必要。可以使用小根堆来优化(小根堆的数据结构可以自己来实现(推荐),或者用库中的)

四、使用小根堆来优化Dijkstra算法

这个定义的heap,完全可以看作集合V-S的具体化!通过这个小根堆,可以直接取出(取出+删除)V-S集合的最小值。

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>//堆的头文件using namespace std;typedef pair<int, int> PII;//堆里存储距离和节点编号const int N = 1e6 + 10;int n, m;//节点数量和边数
int h[N], w[N], e[N], ne[N], idx;//邻接表存储图
int dist[N];//存储距离
bool st[N];//存储状态void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}int dijkstra()
{memset(dist, 0x3f, sizeof dist);//距离初始化为无穷大dist[1] = 0;priority_queue<PII, vector<PII>, greater<PII>> heap;//小根堆heap.push({0, 1});//插入距离和节点编号while (heap.size()){auto t = heap.top();//取距离源点最近的点heap.pop();int ver = t.second, distance = t.first;//ver:节点编号,distance:源点距离ver 的距离if (st[ver]) continue;//如果距离已经确定,则跳过该点st[ver] = true;for (int i = h[ver]; i != -1; i = ne[i])//更新ver所指向的节点距离{int j = e[i];if (dist[j] > dist[ver] + w[i]){dist[j] = dist[ver] + w[i];heap.push({dist[j], j});//距离变小,则入堆}}}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}int main()
{scanf("%d%d", &n, &m);memset(h, -1, sizeof h);while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}cout << dijkstra() << endl;return 0;
}

使用小根堆后,找到 t 的耗时从 O(n^2) 将为了 O(1)。每次更新 dist 后,需要向堆中插入更新的信息。所以更新dist的时间复杂度有 O(e) 变为了 O(elogn)。总时间复杂度有 O(n^2) 变为了 O(n + elongn)。适用于稀疏图。

五、深入和反思

最开始我们说到,Dijkstra算法只适用于边的权重都是正数的情况。为什么负权边不行呢?

看一个Dijkstra算法失效的例子:

在这里插入图片描述
A→B→D→E,确定dist[E]=20,dist[D]=8

然后A→C→D虽然更新了D点的dist,使之正确dist[D]=-1,但是由于D已经被遍历过,无法通过D来更新E,导致最终求出的A→E的最小距离出错。

为什么呢?

D的dist的正确性不受负权的影响,是因为负权指向的是D,在更新节点,更新dist的时候,会更新掉D的错误值。但E就不一样了,在当前局部,只有D一个经过它,D一旦遍历过后,更新了E。当经过C到D时,无法再通过正确的D去更新E!

如果全部是正值的话,在A→D时,能一下子确定当前真正的dist[D]!再dist[D]+12,那dist[E]也是正确的!

所以根本原因在于,存在负权边,dist[D]的真值不能在更新dist[E]之前确定。

最后是我个人总结的理解:

💐在Dijkstra算法视角,把B遍历并进行相关更新后,它当前得知了如下情况:dist[A] = 0,dist[B] = 2,dist[D] = 5,dist[C] = 999,dist[D] = 999+C,C>0,Dijkstra当然会放弃A-C-D这条路,可是C其实<0,这条路不该被放弃,反而A-C-D的路径长度很有可能会小于A-B-C的长度,正是由于Dijkstra的这点输入,导致出现负权边时,结果不正确,再说,人家的正确性本来就是建立在所有边的权重都>0的基础上!


在这里插入图片描述

  • Java岛冒险记【从小白到大佬之路】
  • LeetCode每日一题–进击大厂
  • 算法

http://www.ppmy.cn/news/35225.html

相关文章

C# 计算方差

50&#xff0c;100&#xff0c;100&#xff0c;60&#xff0c;50 计算他们的方差 为了计算这些数的方差&#xff0c;需要进行以下步骤&#xff1a; 1. 计算平均值&#xff0c;即将这些数相加&#xff0c;然后除以它们的数量。 平均值 (50 100 100 60 50) / 5 72 2. 计…

ESP8266WiFi模块与Android APP实现数据传输(一)---硬件接线

前言&#xff1a;本文主要介绍一下ESP8266WiFi模块与Andriod APP实现数据传输采用的硬件、接线、注意事项等。所需器件&#xff1a;序号器件型号1安可信ESP8266-12F&#xff08;AT MQTT固件&#xff09;2龙邱多电源模块&#xff08;12V1A转换线&#xff09;3TTL转USB模块4面包板…

基于 PyTorch + LSTM 进行时间序列预测(附完整源码)

时间序列数据&#xff0c;顾名思义是一种随时间变化的数据类型。 例如&#xff0c;24小时内的温度、一个月内各种产品的价格、某家公司一年内的股票价格等。深度学习模型如长短期记忆网络&#xff08;LSTM&#xff09;能够捕捉时间序列数据中的模式&#xff0c;因此可以用于预…

冒泡 VS 插入 VS 选择——谁更胜一筹?(附排序源码)

文章目录什么样的“排序算法”更加优质&#xff1f;排序算法的执行效率排序算法的内存消耗排序算法的稳定性冒泡排序&#xff08;Bubble Sort&#xff09;插入排序&#xff08;Insertion Sort&#xff09;选择排序&#xff08;Selection Sort&#xff09;最终的胜利者&#x1f…

K8s 应用的网络可观测性: Cilium VS DeepFlow

随着分布式服务架构的流行,特别是微服务等设计理念在现代应用普及开来,应用中的服务变得越来越分散,因此服务之间的通信变得越来越依赖网络,很有必要来谈谈实现微服务可观测性中越来越重要的一环——云原生网络的可观测。K8s 是微服务设计理念能落地的最重要的承载体,本文…

SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】

文章目录前言1、分布式情况下如何加锁2、具体实现过程3、测试3.1 一个服务按照多个端口同时启动3.2 使用jmeter进行压测前言 上一篇实现了单体应用下如何上锁,这一篇主要说明如何在分布式场景下上锁 上一篇地址:加锁 1、分布式情况下如何加锁 需要注意的点是: 在上锁和释放…

Java stream性能比较

环境 Ubuntu 22.04IntelliJ IDEA 2022.1.3JDK 17CPU&#xff1a;8核 ➜ ~ cat /proc/cpuinfo | egrep -ie physical id|cpu cores physical id : 0 cpu cores : 1 physical id : 2 cpu cores : 1 physical id : 4 cpu cores : 1 physical id : 6 cpu cores : 1 physical id …

hexo 搭建个人博客记录

看B站的程序羊的关于搭建hexo博客的方法自己搭了一个博客&#xff0c;链接是 手把手教你从0开始搭建自己的个人博客 |无坑版视频教程| hexo 下面就视频所讲做做笔记&#xff0c;以后可以回来查看&#xff0c;推荐小伙伴想搭建hexo博客的可以去看看这个视频。 1. 安装Node.js…