冒泡 VS 插入 VS 选择——谁更胜一筹?(附排序源码)

news/2024/11/17 4:49:58/

文章目录

    • 什么样的“排序算法”更加优质?
      • 排序算法的执行效率
      • 排序算法的内存消耗
      • 排序算法的稳定性
    • 冒泡排序(Bubble Sort)
    • 插入排序(Insertion Sort)
    • 选择排序(Selection Sort)
    • 最终的胜利者
    • 👿最后说一句

在这里插入图片描述

🐱‍🐉作者简介:大家好,我是黑洞晓威,一名大二学生,希望和大家一起进步。
👿本文收录于 算法,本专栏是针对大学生、初学算法的人准备,解析常见的数据结构与算法,同时备战蓝桥杯。

排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。

排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。

今天我们来学习冒泡排序,插入排序,选择排序

带着问题去学习,是最有效的学习方法。所以按照惯例,我还是先给你出一个思考题: 插入排序和冒泡排序的时间复杂度相同,都是O(n2),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?

带着这个问题,我们开始今天的内容,暴打排序算法!
在这里插入图片描述

什么样的“排序算法”更加优质?

学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?

排序算法的执行效率

对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:

1.最好情况、最坏情况、平均情况时间复杂度

我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。

为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。

2.时间复杂度的系数、常数 、低阶

我们知道,时间复杂度反映的是数据规模n很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是10个、100个、1000个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

3.比较次数和交换(或移动)次数

基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念, 原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是O(1)的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标, 稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

我通过一个例子来解释一下。比如我们有一组数据2,9,3,4,8,3,按照大小排序之后就是2,3,3,4,8,9。

这组数据里有两个3。经过某种排序算法排序之后,如果两个3的前后顺序没有改变,那我们就把这种排序算法叫作 稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作 不稳定的排序算法

你可能要问了,两个3哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?

很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个key来排序。

比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有10万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?

最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。

借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?

稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

在这里插入图片描述

冒泡排序(Bubble Sort)

我们从冒泡排序开始,学习今天的三种排序算法。

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。

我用一个例子,带你看下冒泡排序的整个过程。我们要对一组数据4,5,6,3,2,1,从小到大进行排序。第一次冒泡操作的详细过程就是这样:

在这里插入图片描述

可以看出,经过一次冒泡操作之后,6这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行6次这样的冒泡操作就行了。

在这里插入图片描述

实际上,刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。我这里还有另外一个例子,这里面给6个元素排序,只需要4次冒泡操作就可以了。

在这里插入图片描述

冒泡排序算法的原理比较容易理解,具体的代码我贴到下面,你可以结合着代码来看我前面讲的原理。

// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {if (n <= 1) return;for (int i = 0; i < n; ++i) {// 提前退出冒泡循环的标志位boolean flag = false;for (int j = 0; j < n - i - 1; ++j) {if (a[j] > a[j+1]) { // 交换int tmp = a[j];a[j] = a[j+1];a[j+1] = tmp;flag = true;  // 表示有数据交换}}if (!flag) break;  // 没有数据交换,提前退出}
}

现在,结合刚才我分析排序算法的三个方面,我有三个问题要问你。

第一,冒泡排序是原地排序算法吗?

冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为O(1),是一个原地排序算法。

第二,冒泡排序是稳定的排序算法吗?

在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

第三,冒泡排序的时间复杂度是多少?

最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行n次冒泡操作,所以最坏情况时间复杂度为O(n2)。

插入排序(Insertion Sort)

我们先来看一个问题。一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。

在这里插入图片描述

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

插入排序具体是如何借助上面的思想来实现排序的呢

首先,我们将数组中的数据分为两个区间, 已排序区间未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

如图所示,要排序的数据是4,5,6,1,3,2,其中左侧为已排序区间,右侧是未排序区间。

在这里插入图片描述

插入排序也包含两种操作,一种是 元素的比较,一种是 元素的移动。当我们需要将一个数据a插入到已排序区间时,需要拿a与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素a插入。

对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。

插入排序的原理也很简单吧?我也将代码实现贴在这里,你可以结合着代码再看下。

// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {if (n <= 1) return;for (int i = 1; i < n; ++i) {int value = a[i];int j = i - 1;// 查找插入的位置for (; j >= 0; --j) {if (a[j] > value) {a[j+1] = a[j];  // 数据移动} else {break;}}a[j+1] = value; // 插入数据}
}

现在,我们来看点稍微复杂的东西。我这里还是有三个问题要问你。

第一,插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是O(1),也就是说,这是一个原地排序算法。

第二,插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

第三,插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为O(n)。注意,这里是 从尾到头遍历已经有序的数据

如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为O(n2)。

还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行n次插入操作,所以平均时间复杂度为O(n2)。

选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

在这里插入图片描述

照例,也有三个问题需要你思考,不过前面两种排序算法我已经分析得很详细了,这里就直接公布答案了。

首先,选择排序空间复杂度为O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为O(n2)。你可以自己来分析看看。

那选择排序是稳定的排序算法吗?这个问题我着重来说一下。

答案是否定的,选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

比如5,8,5,2,9这样一组数据,使用选择排序算法来排序的话,第一次找到最小元素2,与第一个5交换位置,那第一个5和中间的5顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。

下面是选择排序的代码:

   public static void selectionSort(int[] arr) {int n = arr.length;// 从未排序的子数组中选择最小的元素,并将其放在已排序子数组的末尾for (int i = 0; i < n - 1; i++) {int minIndex = i; // 假设当前元素为最小元素for (int j = i + 1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j; // 找到更小的元素,更新最小元素的下标}}// 将最小元素与已排序子数组的末尾交换int temp = arr[minIndex];arr[minIndex] = arr[i];arr[i] = temp;}}

最终的胜利者

基本的知识都讲完了,我们来看那种排序更加优秀:冒泡排序和插入排序的时间复杂度都是O(n2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?

从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要3个赋值操作,而插入排序只需要1个。我们来看这段操作:

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换int tmp = a[j];a[j] = a[j+1];a[j+1] = tmp;flag = true;
}插入排序中数据的移动操作:
if (a[j] > value) {a[j+1] = a[j];  // 数据移动
} else {break;
}

我们把执行一个赋值语句的时间粗略地计为单位时间(unit_time),然后分别用冒泡排序和插入排序对同一个逆序度是K的数组进行排序。用冒泡排序,需要K次交换操作,每次需要3个赋值语句,所以交换操作总耗时就是3*K单位时间。而插入排序中数据移动操作只需要K个单位时间。

所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。插入排序的算法思路也有很大的优化空间,我们只是讲了最基础的一种。

👿最后说一句

感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。

才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。

在这里插入图片描述


http://www.ppmy.cn/news/35221.html

相关文章

K8s 应用的网络可观测性: Cilium VS DeepFlow

随着分布式服务架构的流行,特别是微服务等设计理念在现代应用普及开来,应用中的服务变得越来越分散,因此服务之间的通信变得越来越依赖网络,很有必要来谈谈实现微服务可观测性中越来越重要的一环——云原生网络的可观测。K8s 是微服务设计理念能落地的最重要的承载体,本文…

SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】

文章目录前言1、分布式情况下如何加锁2、具体实现过程3、测试3.1 一个服务按照多个端口同时启动3.2 使用jmeter进行压测前言 上一篇实现了单体应用下如何上锁,这一篇主要说明如何在分布式场景下上锁 上一篇地址:加锁 1、分布式情况下如何加锁 需要注意的点是: 在上锁和释放…

Java stream性能比较

环境 Ubuntu 22.04IntelliJ IDEA 2022.1.3JDK 17CPU&#xff1a;8核 ➜ ~ cat /proc/cpuinfo | egrep -ie physical id|cpu cores physical id : 0 cpu cores : 1 physical id : 2 cpu cores : 1 physical id : 4 cpu cores : 1 physical id : 6 cpu cores : 1 physical id …

hexo 搭建个人博客记录

看B站的程序羊的关于搭建hexo博客的方法自己搭了一个博客&#xff0c;链接是 手把手教你从0开始搭建自己的个人博客 |无坑版视频教程| hexo 下面就视频所讲做做笔记&#xff0c;以后可以回来查看&#xff0c;推荐小伙伴想搭建hexo博客的可以去看看这个视频。 1. 安装Node.js…

javascript基础(二)

17 事件处理JS 事件&#xff08;event&#xff09;是当用户与网页进行交互时发生的事情&#xff0c;例如单机某个链接或按钮、在文本框中输入文本、按下键盘上的某个按键、移动鼠标等等。当事件发生时&#xff0c;您可以使用 JavaScript 中的事件处理程序&#xff08;也可称为事…

电路基础_模拟电路_问答_2023_01

模拟电路 &#xff08;数学、电路、编程、信号处理&#xff09; 模拟电路的历史可以追溯到19世纪初&#xff0c;当时电学理论才刚刚开始发展。经过多年的研究和实践&#xff0c;一些重要的电学定律和基本电路结构被发现和建立&#xff0c;如欧姆定律、基尔霍夫定律、戴维南-诺…

【数据结构】顺序表的深度刨剖析

前言&#xff1a;在上一篇文章中&#xff0c;我们已经对数据结构有了一定了解&#xff0c;我们可以通过优化空间复杂度或者时间复杂度从而提高我们程序运行或存储速率。至此我们就知道了数据结构的重要性&#xff0c;所以今天我们将要了解和学习一种实用的数据结构——线性表。…

中科亿海微FPGA应用(一、点灯)

1.软件&#xff1a; https://download.csdn.net/download/weixin_41784968/87564071 需要申请license才能使用&#xff1a;软件试用申请_软件试用申请_中科亿海微电子科技&#xff08;苏州&#xff09;有限公司 2.开发板&#xff1a; 芯片EQ6HL45&#xff0c;42.5k LUT。 3…