在 AI 上训练 AI:ChatGPT 上训练另一种机器学习模型

news/2024/11/9 0:49:22/

ChatGPT 可以像 Linux 终端一样运行,并在给出以下提示时返回执行结果。下面我来带大家操作起来。

文章目录

    • 终端操作
    • 训练机器学习模型
    • 镜像演示

终端操作

输入:I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English, I will do so by putting text inside curly brackets {like this}. My first command is pwd

当我们给出上述提示时,ChatGPT 正确返回了执行 pwd 命令的结果。如下:
在这里插入图片描述

首先,我们将使用 ls 命令检查当前目录下有哪些文件。输入:ls
输出:
在这里插入图片描述
现在我们为这个演示创建一个示例目录。输入:mkdir sample
输出如下:
在这里插入图片描述
进入目录,查看当前路径。输入:cd sample; pwd
输出如下:

/home/username/sample

这里查看python路径输入:which python3
输出如下:

/usr/bin/python3

查看版本输入:python3 --version
输出:

Python 3.8.10

训练机器学习模型

这次我们将运行以下 python 脚本来使用鸢尾花数据训练决策树模型。我们可以在本地运行这个脚本,但这次我们将在 ChatGPT 的虚拟 Linux 内核上运行它。
输入:

echo 'import numpy as np\nimport pandas as pd\nfrom sklearn import datasets\nfrom sklearn.model_selection import train_test_split\nfrom sklearn import tree\nfrom sklearn.metrics import accuracy_score\n\niris = datasets.load_iris()\niris_df = pd.DataFrame(iris.data, columns=iris.feature_names)\niris_df["species"] = [iris.target_names[i] for i in iris.target]\nprint(iris_df.sample(5))\nX = iris_df.iloc[:, :4]\ny = iris.target\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)\nprint("train", len(y_train))\nprint("test", len(y_test))\nclf = tree.DecisionTreeClassifier()\nclf = clf.fit(X_train, y_train)\ny_pred = clf.predict(X_test)\nprint("Accuracy: %.2f" % accuracy_score(y_test, y_pred))\nprint(y_pred)\nprint(y_test)' > sample.py

上述把代码写入了一个叫做sample.py文件中,下面我们来查看一下文件内容。

输入:cat sample.py
输出:

import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.metrics import accuracy_scoreiris = datasets.load_iris()
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df["species"] = [iris.target_names[i] for i in iris.target]
print(iris_df.sample(5))
X = iris_df.iloc[:, :4]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)
print("train", len(y_train))
print("test", len(y_test))
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Accuracy: %.2f" % accuracy_score(y_test, y_pred))
print(y_pred)
print(y_test)

现在我们执行代码,输入:python3 sample.py
输出:

    sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)     species
80                 5.5                2.4                 3.8                1.1  versicolor
43                 5.0                3.5                 1.6                0.6      setosa
4                  5.0                3.6                 1.4                0.2      setosa
21                 5.1                3.7                 1.5                0.4      setosa
16                 5.4                3.9                 1.3                0.4      setosa
train 120
test 30
Accuracy: 1.00
[1 0 0 2 2 2 2 1 1 0 2 0 1 1 1 2 1 0 0 2 0 2 2 1 1 0 1 1 2 0]
[1 0 0 2 2 2 2 1 1 0 2 0 1 1 1 2 1 0 0 2 0 2 2 1 1 0 1 1 2 0]

是的,我们成功在上面训练好了模型,并进行了评估。输入:date

输出如下:

{Current Date and Time will be shown in the format like below}
Mon Mar 14 16:45:00 UTC 2023

镜像演示

上述操作同样可以在我搭建的镜像中进行。

仓库源码和使用教程地址:https://github.com/sfvsfv/sfvsfv.github.io镜像地址:https://sfvsfv.github.io/

在这里插入图片描述
在这里插入图片描述


http://www.ppmy.cn/news/34591.html

相关文章

课设-机器学习课设-实现新闻分类

✅作者简介:CSDN内容合伙人、信息安全专业在校大学生🏆 🔥系列专栏 :课设-机器学习 📃新人博主 :欢迎点赞收藏关注,会回访! 💬舞台再大,你不上台,…

基于OpenCV的人脸识别

目录 🥩 前言 🍖 环境使用 🍖 模块使用 🍖 模块介绍 🍖 模块安装问题: 🥩 OpenCV 简介 🍖 安装 OpenCV 模块 🥩 OpenCV 基本使用 🍖 读取图片 🍗 【…

MHA实现mysql数据库高可用

目录 MHA原理 MHA工具包 MHA实现mysql高可用实战 MHA原理 ①MHA利用 SELECT 1 As Value 指令判断master服务器的健康性,一旦master 宕机,MHA 从宕机崩溃的master保存二进制日志事件(binlog events) ②识别含有最新更新的slave ③应用差异的中继日志&…

【前缀和】

前缀和前缀和子矩阵的和结语前缀和 输入一个长度为 n的整数序列。 接下来再输入 m 个询问,每个询问输入一对 l,r 对于每个询问,输出原序列中从第 l 个数到第 r个数的和。 输入格式第一行包含两个整数 n和 m 第二行包含 n个整数,表示整数…

ES-笔记

1、索引 查看所有索引 GET /_cat/indices?v健康状况 GET _cluster/health GET _cluster/health?levelindices分词器 POST _analyze {"analyzer": "ik_max_word","text": "四川森森管理公司" }索引数据拷贝 POST _reindex {&quo…

java学习笔记——抽象类

2.1 概述 由来 父类中的方法,被他的子类们重写,子类各自的实现都不尽相同。那么父类的方法声明和方法主体,只有声明还有意义,而方法主体则没有存在的意义了。我们把没有主体的方法称为抽象方法。java语法规定,包含抽象…

Linux命令运行原理shell和bash

目录前言什么是shell,什么是bash?ls -l 执行过程前言 学习操作系统的过程中我们经常在自己的shell中执行一些Linux命令,那么当我们输入一个类似于 ls -a 这样的命令式,发生了什么? 换句话说,从我们在shell中输入ls -a 按下回车…

基于springboot框架实现校园闲置物品交易 源码+论文

基于springboot框架实现校园闲置物品交易 源码论文开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Ma…