Spring Boot + Redis 实现分布式锁

news/2024/12/2 20:57:44/

一、业务背景

有些业务请求,属于耗时操作,需要加锁,防止后续的并发操作,同时对数据库的数据进行操作,需要避免对之前的业务造成影响。

二、分析流程

使用 Redis 作为分布式锁,将锁的状态放到 Redis 统一维护,解决集群中单机 JVM 信息不互通的问题,规定操作顺序,保护用户的数据正确。

梳理设计流程

  1. 新建注解 @interface,在注解里设定入参标志

  1. 增加 AOP 切点,扫描特定注解

  1. 建立 @Aspect 切面任务,注册 bean 和拦截特定方法

  1. 特定方法参数 ProceedingJoinPoint,对方法 pjp.proceed() 前后进行拦截

  1. 切点前进行加锁,任务执行后进行删除 key

核心步骤:加锁、解锁和续时

使用了 RedisTemplate 的 opsForValue.setIfAbsent 方法,判断是否有 key,设定一个随机数 UUID.random().toString,生成一个随机数作为 value。

从 redis 中获取锁之后,对 key 设定 expire 失效时间,到期后自动释放锁。

按照这种设计,只有第一个成功设定 Key 的请求,才能进行后续的数据操作,后续其它请求由于无法获得锁资源,将会失败结束。

超时问题

担心 pjp.proceed() 切点执行的方法太耗时,导致 Redis 中的 key 由于超时提前释放了。

例如,线程 A 先获取锁,proceed 方法耗时,超过了锁超时时间,到期释放了锁,这时另一个线程 B 成功获取 Redis 锁,两个线程同时对同一批数据进行操作,导致数据不准确。

解决方案:增加一个「续时」

任务不完成,锁不释放:

维护了一个定时线程池 ScheduledExecutorService,每隔 2s 去扫描加入队列中的 Task,判断是否失效时间是否快到了,公式为:【失效时间】<= 【当前时间】+【失效间隔(三分之一超时)】

/*** 线程池,每个 JVM 使用一个线程去维护 keyAliveTime,定时执行 runnable*/
private static final ScheduledExecutorService SCHEDULER =
new ScheduledThreadPoolExecutor(1,
new BasicThreadFactory.Builder().namingPattern("redisLock-schedule-pool").daemon(true).build());
static {SCHEDULER.scheduleAtFixedRate(() -> {// do something to extend time}, 0,  2, TimeUnit.SECONDS);
}

三、设计方案

经过上面的分析,设计出了这个方案:

前面已经说了整体流程,这里强调一下几个核心步骤:

  • 拦截注解 @RedisLock,获取必要的参数

  • 加锁操作

  • 续时操作

  • 结束业务,释放锁

四、实操

之前也有整理过 AOP 使用方法,可以参考一下。

相关属性类配置

业务属性枚举设定

public enum RedisLockTypeEnum {/*** 自定义 key 前缀*/ONE("Business1", "Test1"),TWO("Business2", "Test2");private String code;private String desc;RedisLockTypeEnum(String code, String desc) {this.code = code;this.desc = desc;}public String getCode() {return code;}public String getDesc() {return desc;}public String getUniqueKey(String key) {return String.format("%s:%s", this.getCode(), key);}
}

任务队列保存参数

public class RedisLockDefinitionHolder {/*** 业务唯一 key*/private String businessKey;/*** 加锁时间 (秒 s)*/private Long lockTime;/*** 上次更新时间(ms)*/private Long lastModifyTime;/*** 保存当前线程*/private Thread currentTread;/*** 总共尝试次数*/private int tryCount;/*** 当前尝试次数*/private int currentCount;/*** 更新的时间周期(毫秒),公式 = 加锁时间(转成毫秒) / 3*/private Long modifyPeriod;public RedisLockDefinitionHolder(String businessKey, Long lockTime, Long lastModifyTime, Thread currentTread, int tryCount) {this.businessKey = businessKey;this.lockTime = lockTime;this.lastModifyTime = lastModifyTime;this.currentTread = currentTread;this.tryCount = tryCount;this.modifyPeriod = lockTime * 1000 / 3;}
}

设定被拦截的注解名字

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface RedisLockAnnotation {/*** 特定参数识别,默认取第 0 个下标*/int lockFiled() default 0;/*** 超时重试次数*/int tryCount() default 3;/*** 自定义加锁类型*/RedisLockTypeEnum typeEnum();/*** 释放时间,秒 s 单位*/long lockTime() default 30;
}

核心切面拦截的操作

RedisLockAspect.java 该类分成三部分来描述具体作用

Pointcut 设定

/*** @annotation 中的路径表示拦截特定注解*/
@Pointcut("@annotation(cn.sevenyuan.demo.aop.lock.RedisLockAnnotation)")
public void redisLockPC() {
}

Around 前后进行加锁和释放锁

前面步骤定义了我们想要拦截的切点,下一步就是在切点前后做一些自定义操作:

@Around(value = "redisLockPC()")
public Object around(ProceedingJoinPoint pjp) throws Throwable {// 解析参数Method method = resolveMethod(pjp);RedisLockAnnotation annotation = method.getAnnotation(RedisLockAnnotation.class);RedisLockTypeEnum typeEnum = annotation.typeEnum();Object[] params = pjp.getArgs();String ukString = params[annotation.lockFiled()].toString();// 省略很多参数校验和判空String businessKey = typeEnum.getUniqueKey(ukString);String uniqueValue = UUID.randomUUID().toString();// 加锁Object result = null;try {boolean isSuccess = redisTemplate.opsForValue().setIfAbsent(businessKey, uniqueValue);if (!isSuccess) {throw new Exception("You can't do it,because another has get the lock =-=");}redisTemplate.expire(businessKey, annotation.lockTime(), TimeUnit.SECONDS);Thread currentThread = Thread.currentThread();// 将本次 Task 信息加入「延时」队列中holderList.add(new RedisLockDefinitionHolder(businessKey, annotation.lockTime(), System.currentTimeMillis(),currentThread, annotation.tryCount()));// 执行业务操作result = pjp.proceed();// 线程被中断,抛出异常,中断此次请求if (currentThread.isInterrupted()) {throw new InterruptedException("You had been interrupted =-=");}} catch (InterruptedException e ) {log.error("Interrupt exception, rollback transaction", e);throw new Exception("Interrupt exception, please send request again");} catch (Exception e) {log.error("has some error, please check again", e);} finally {// 请求结束后,强制删掉 key,释放锁redisTemplate.delete(businessKey);log.info("release the lock, businessKey is [" + businessKey + "]");}return result;
}

上述流程简单总结一下:

  • 解析注解参数,获取注解值和方法上的参数值

  • redis 加锁并且设置超时时间

  • 将本次 Task 信息加入「延时」队列中,进行续时,方式提前释放锁

  • 加了一个线程中断标志

  • 结束请求,finally 中释放锁

续时操作

这里用了 ScheduledExecutorService,维护了一个线程,不断对任务队列中的任务进行判断和延长超时时间:

// 扫描的任务队列
private static ConcurrentLinkedQueue<RedisLockDefinitionHolder> holderList = new ConcurrentLinkedQueue();
/*** 线程池,维护keyAliveTime*/
private static final ScheduledExecutorService SCHEDULER = new ScheduledThreadPoolExecutor(1,new BasicThreadFactory.Builder().namingPattern("redisLock-schedule-pool").daemon(true).build());
{// 两秒执行一次「续时」操作SCHEDULER.scheduleAtFixedRate(() -> {// 这里记得加 try-catch,否者报错后定时任务将不会再执行=-=Iterator<RedisLockDefinitionHolder> iterator = holderList.iterator();while (iterator.hasNext()) {RedisLockDefinitionHolder holder = iterator.next();// 判空if (holder == null) {iterator.remove();continue;}// 判断 key 是否还有效,无效的话进行移除if (redisTemplate.opsForValue().get(holder.getBusinessKey()) == null) {iterator.remove();continue;}// 超时重试次数,超过时给线程设定中断if (holder.getCurrentCount() > holder.getTryCount()) {holder.getCurrentTread().interrupt();iterator.remove();continue;}// 判断是否进入最后三分之一时间long curTime = System.currentTimeMillis();boolean shouldExtend = (holder.getLastModifyTime() + holder.getModifyPeriod()) <= curTime;if (shouldExtend) {holder.setLastModifyTime(curTime);redisTemplate.expire(holder.getBusinessKey(), holder.getLockTime(), TimeUnit.SECONDS);log.info("businessKey : [" + holder.getBusinessKey() + "], try count : " + holder.getCurrentCount());holder.setCurrentCount(holder.getCurrentCount() + 1);}}}, 0, 2, TimeUnit.SECONDS);
}

这段代码,用来实现设计图中虚线框的思想,避免一个请求十分耗时,导致提前释放了锁。

这里加了「线程中断」Thread#interrupt,希望超过重试次数后,能让线程中断(未经严谨测试,仅供参考哈哈哈哈)

不过建议如果遇到这么耗时的请求,还是能够从根源上查找,分析耗时路径,进行业务优化或其它处理,避免这些耗时操作。

所以记得多打点 Log,分析问题时可以更快一点。如何使用SpringBoot AOP 记录操作日志、异常日志?

五、开始测试

在一个入口方法中,使用该注解,然后在业务中模拟耗时请求,使用了 Thread#sleep

@GetMapping("/testRedisLock")
@RedisLockAnnotation(typeEnum = RedisLockTypeEnum.ONE, lockTime = 3)
public Book testRedisLock(@RequestParam("userId") Long userId) {try {log.info("睡眠执行前");Thread.sleep(10000);log.info("睡眠执行后");} catch (Exception e) {// log errorlog.info("has some error", e);}return null;
}

使用时,在方法上添加该注解,然后设定相应参数即可,根据 typeEnum 可以区分多种业务,限制该业务被同时操作。

测试结果:

2020-04-04 14:55:50.864 INFO 9326 --- [nio-8081-exec-1] c.s.demo.controller.BookController : 睡眠执行前
2020-04-04 14:55:52.855 INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect : businessKey : [Business1:1024], try count : 0
2020-04-04 14:55:54.851 INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect : businessKey : [Business1:1024], try count : 1
2020-04-04 14:55:56.851 INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect : businessKey : [Business1:1024], try count : 2
2020-04-04 14:55:58.852 INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect : businessKey : [Business1:1024], try count : 3
2020-04-04 14:56:00.857 INFO 9326 --- [nio-8081-exec-1] c.s.demo.controller.BookController : has some error
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method) [na:1.8.0_221]

我这里测试的是重试次数过多,失败的场景,如果减少睡眠时间,就能让业务正常执行。

如果同时请求,你将会发现以下错误信息:

表示我们的锁的确生效了,避免了重复请求。

六、总结

对于耗时业务和核心数据,不能让重复的请求同时操作数据,避免数据的不正确,所以要使用分布式锁来对它们进行保护。

再来梳理一下设计流程:

  1. 新建注解 @interface,在注解里设定入参标志

  1. 增加 AOP 切点,扫描特定注解

  1. 建立 @Aspect 切面任务,注册 bean 和拦截特定方法

  1. 特定方法参数 ProceedingJoinPoint,对方法 pjp.proceed() 前后进行拦截

  1. 切点前进行加锁,任务执行后进行删除 key

本次学习是通过 Review 小伙伴的代码设计,从中了解分布式锁的具体实现,仿照他的设计,重新写了一份简化版的业务处理。对于之前没考虑到的「续时」操作,这里使用了守护线程来定时判断和延长超时时间,避免了锁提前释放。

于是乎,同时回顾了三个知识点:

1、AOP 的实现和常用方法

2、定时线程池 ScheduledExecutorService 的使用和参数含义

3、线程 Thread#interrupt 的含义以及用法(这个挺有意思的,可以深入再学习一下)


http://www.ppmy.cn/news/26209.html

相关文章

【AI人工智能】国内智能聊天OpenAI 注册(亲测成功!)

目录 1.注册账号 2.短信验证码 3.查看API KEY 密钥 4.阅读API教程,开始定制自己的智能聊天机器人

15:高级篇 - CTK 事件与监听

作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 生命周期层事件 在 Plugin 生命周期的不同状态相互转换时,CTK Plugin Framework 会发出各种不同的事件,以供事先注册好的事件监听器处理,这些事件被称为“生命周期层事件”。CTK Plugin Framework 支持的…

uniapp 悬浮窗(应用内、无需授权) Ba-FloatWindow2

简介&#xff08;下载地址&#xff09; Ba-FloatWindow2 是一款应用内并且无需授权的悬浮窗插件。支持多种拖动&#xff1b;自定义位置、大小&#xff1b;支持动态修改。 支持自动定义起始位置支持自定义悬浮窗大小支持贴边显示支持多种拖动方效果&#xff1a;不可拖动、任意…

ETL和数据建模

一、什么是ETL ETL是数据抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;、加载&#xff08;Load &#xff09;的简写&#xff0c;它是将OLTP系统中的数据经过抽取&#xff0c;并将不同数据源的数据进行转换、整合&#xff0c;得出一致性的数据&…

DPDK — 数据加速方案的核心思想

目录 文章目录 目录DPDK 数据加速方案1、使用用户态协议栈来代替内核协议栈Linux UIO FrameworkDPDK UIO Framework2、使用轮训来代替中断Kernelspace igb_uio DriverUserspace PMD3、使用多核编程代替多线程无锁环队列:CPU 核间无锁通信DPDK 数据加速方案

FLAT:Flat-LAttice Transformer

中文NLP的一个问题&#xff0c;就是中文的字除了句句之间有标点符号之外都是连在一起的&#xff0c;不像英文词语是单独分割的。中文NLP处理一般会有2种方式&#xff1a;基于字的&#xff0c;char-level。现在比较常用的方法&#xff0c;但会缺少词组的语义信息。基于词的&…

(三十六)Vue解决Ajax跨域问题

文章目录环境准备vue的跨域问题vue跨域问题解决方案方式一方式二上一篇&#xff1a;&#xff08;三十五&#xff09;Vue之过渡与动画 环境准备 首先我们要借助axios发送Ajax&#xff0c;axios安装命令&#xff1a;npm i axios 其次准备两台服务器&#xff0c;这里使用node.j…

Blazor入门100天 : 身份验证和授权 (2) - 角色/组件/特性/过程逻辑

目录 建立默认带身份验证 Blazor 程序角色/组件/特性/过程逻辑DB 改 Sqlite将自定义字段添加到用户表脚手架拉取IDS文件,本地化资源freesql 生成实体类,freesql 管理ids数据表初始化 Roles,freesql 外键 > 导航属性完善 freesql 和 bb 特性 本节源码 https://github.com/…