高等数学(第七版)同济大学 习题12-4
1.求函数f(x)=cosx的泰勒级数,并验证它在整个数轴上收敛于这函数.\begin{aligned}&1. \ 求函数f(x)=cos\ x的泰勒级数,并验证它在整个数轴上收敛于这函数.&\end{aligned}1. 求函数f(x)=cos x的泰勒级数,并验证它在整个数轴上收敛于这函数.
解:
在定点x0处,因为f(n)(x0)=cos(x0+n⋅π2)(n=0,1,2,⋅⋅⋅),所以f(x)的泰勒级数为cosx0+cos(x0+π2)(x−x0)+cos(x0+π)2!(x−x0)2+⋅⋅⋅+cos(x0+nπ2)n!(x−x0)n+⋅⋅⋅,对于任意的x∈(−∞,+∞),∣Rn(x)∣=∣cos(ξ+n+12π)(n+1)!(x−x0)n+1∣≤∣x−x0∣n+1(n+1)!,因limn→∞∣x−x0∣n+1(n+1)!=0,所以得limn→∞Rn(x)=0,在整个数轴上,有f(x)=cosx=cosx0+cos(x0+π2)(x−x0)+cos(x0+π)2!(x−x0)2+⋅⋅⋅+cos(x0+nπ2)n!(x−x0)n+⋅⋅⋅.\begin{aligned} &\ \ 在定点x_0处,因为f^{(n)}(x_0)=cos\left(x_0+n\cdot \frac{\pi}{2}\right)\ (n=0,1,2,\cdot\cdot\cdot),所以f(x)的泰勒级数为\\\\ &\ \ cos\ x_0+cos\left(x_0+\frac{\pi}{2}\right)(x-x_0)+\frac{cos(x_0+\pi)}{2!}(x-x_0)^2+\cdot\cdot\cdot+\frac{cos\left(x_0+\frac{n\pi}{2}\right)}{n!}(x-x_0)^n+\cdot\cdot\cdot,\\\\ &\ \ 对于任意的x\in (-\infty, \ +\infty),|R_n(x)|=\left|\frac{cos\left(\xi+\frac{n+1}{2}\pi\right)}{(n+1)!}(x-x_0)^{n+1}\right| \le \frac{|x-x_0|^{n+1}}{(n+1)!},\\\\ &\ \ 因\lim_{n \rightarrow \infty}\frac{|x-x_0|^{n+1}}{(n+1)!}=0,所以得\lim_{n \rightarrow \infty}R_n(x)=0,在整个数轴上,有\\\\ &\ \ f(x)=cos\ x=cos\ x_0+cos\left(x_0+\frac{\pi}{2}\right)(x-x_0)+\frac{cos(x_0+\pi)}{2!}(x-x_0)^2+\cdot\cdot\cdot+\frac{cos\left(x_0+\frac{n\pi}{2}\right)}{n!}(x-x_0)^n+\cdot\cdot\cdot. & \end{aligned} 在定点x0处,因为f(n)(x0)=cos(x0+n⋅2π) (n=0,1,2,⋅⋅⋅),所以f(x)的泰勒级数为 cos x0+cos(x0+2π)(x−x0)+2!cos(x0+π)(x−x0)2+⋅⋅⋅+n!cos(x0+2nπ)(x−x0)n+⋅⋅⋅, 对于任意的x∈(−∞, +∞),∣Rn(x)∣=(n+1)!cos(ξ+2n+1π)(x−x0)n+1≤(n+1)!∣x−x0∣n+1, 因n→∞lim(n+1)!∣x−x0∣n+1=0,所以得n→∞limRn(x)=0,在整个数轴上,有 f(x)=cos x=cos x0+cos(x0+2π)(x−x0)+2!cos(x0+π)(x−x0)2+⋅⋅⋅+n!cos(x0+2nπ)(x−x0)n+⋅⋅⋅.
2.将下列函数展开成x的幂级数,并求展开式成立的区间:\begin{aligned}&2. \ 将下列函数展开成x的幂级数,并求展开式成立的区间:&\end{aligned}2. 将下列函数展开成x的幂级数,并求展开式成立的区间:
(1)shx=ex−e−x2; (2)ln(a+x)(a>0);(3)ax; (4)sin2x;(5)(1+x)ln(1+x); (6)x1+x2.\begin{aligned} &\ \ (1)\ \ sh\ x=\frac{e^x-e^{-x}}{2};\ \ \ \ \ \ \ \ \ \ (2)\ \ ln(a+x)\ (a \gt 0);\\\\ &\ \ (3)\ \ a^x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ sin^2\ x;\\\\ &\ \ (5)\ \ (1+x)ln(1+x);\ \ \ \ \ \ \ \ \ \ \ (6)\ \ \frac{x}{\sqrt{1+x^2}}. & \end{aligned} (1) sh x=2ex−e−x; (2) ln(a+x) (a>0); (3) ax; (4) sin2 x; (5) (1+x)ln(1+x); (6) 1+x2x.
解:
(1)因为ex=∑n=0∞xnn!,x∈(−∞,+∞),所以e−x=∑n=0∞(−1)nn!xn,x∈(−∞,+∞),则ex−e−x2=12∑n=0∞1−(−1)nn!xn=∑n=1∞x2n−1(2n−1)!,x∈(−∞,+∞).(2)ln(a+x)=lna+ln(1+xa),因为ln(1+x)=∑n=1∞(−1)n−1nxn,x∈(−1,+1],所以ln(a+x)=lna+∑n=1∞(−1)n−1n(xa)n,x∈(−a,+a].(3)因为ex=∑n=0∞xnn!,x∈(−∞,+∞),所以ax=exlna=∑n=0∞(xlna)nn!=∑n=0∞(lna)nn!xn,x∈(−∞,+∞).(4)因为cosx=∑n=0∞(−1)n(2n)!x2n,x∈(−∞,+∞),所以sin2x=12−12cos2x=12−12∑n=0∞(−1)n(2x)2n(2n)!=∑n=1∞(−1)n−1(2x)2n2(2n)!,x∈(−∞,+∞).(5)因为ln(1+x)=∑n=1∞(−1)n−1xnn,x∈(−1,1],所以(1+x)ln(1+x)=ln(1+x)+xln(1+x)=∑n=1∞(−1)n−1xnn+x∑n=1∞(−1)n−1xnn=∑n=1∞(−1)n−1xnn+∑n=1∞(−1)n−1xn+1n=∑n=1∞(−1)n−1xnn+∑n=2∞(−1)nxnn−1=x+∑n=2∞[(−1)n−1n+(−1)nn−1]xn=x+∑n=2∞(−1)nxnn(n−1),x∈(−1,1].(6)将x2替换展开式11+x=1+∑n=1∞(−1)n1⋅3⋅5⋅⋅⋅⋅⋅(2n−1)2⋅4⋅6⋅⋅⋅⋅⋅(2n)xn,x∈(−1,1]中的x,得11+x2=1+∑n=1∞(−1)n1⋅3⋅5⋅⋅⋅⋅⋅(2n−1)2⋅4⋅6⋅⋅⋅⋅⋅(2n)x2n,x∈[−1,1],从而得x1+x2=x+∑n=1∞(−1)n1⋅3⋅5⋅⋅⋅⋅⋅(2n−1)2⋅4⋅6⋅⋅⋅⋅⋅(2n)x2n+1=x+∑n=1∞(−1)n2(2n)!(n!)2(x2)2n+1,x∈[−1,1].\begin{aligned} &\ \ (1)\ 因为e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!},x \in (-\infty, \ +\infty),所以e^{-x}=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n,x \in (-\infty, \ +\infty),\\\\ &\ \ \ \ \ \ \ \ 则\frac{e^x-e^{-x}}{2}=\frac{1}{2}\sum_{n=0}^{\infty}\frac{1-(-1)^n}{n!}x^n=\sum_{n=1}^{\infty}\frac{x^{2n-1}}{(2n-1)!},x \in (-\infty, \ +\infty).\\\\ &\ \ (2)\ ln(a+x)=ln\ a+ln\left(1+\frac{x}{a}\right),因为ln(1+x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}x^n,x \in (-1, \ +1],\\\\ &\ \ \ \ \ \ \ \ 所以ln(a+x)=ln\ a+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\left(\frac{x}{a}\right)^n,x \in (-a, \ +a].\\\\ &\ \ (3)\ 因为e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!},x \in (-\infty, \ +\infty),所以a^x=e^{xln\ a}=\sum_{n=0}^{\infty}\frac{(xln\ a)^n}{n!}=\sum_{n=0}^{\infty}\frac{(ln\ a)^n}{n!}x^n,x \in (-\infty, \ +\infty).\\\\ &\ \ (4)\ 因为cos\ x=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n},x \in (-\infty, \ +\infty),所以sin^2\ x=\frac{1}{2}-\frac{1}{2}cos\ 2x=\frac{1}{2}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n(2x)^{2n}}{(2n)!}=\\\\ &\ \ \ \ \ \ \ \ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}(2x)^{2n}}{2(2n)!},x \in (-\infty, \ +\infty).\\\\ &\ \ (5)\ 因为ln(1+x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n},x \in (-1, \ 1],所以(1+x)ln(1+x)=ln(1+x)+xln(1+x)=\\\\ &\ \ \ \ \ \ \ \ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n}+x\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n}+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^{n+1}}{n}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n}+\sum_{n=2}^{\infty}\frac{(-1)^nx^n}{n-1}=\\\\ &\ \ \ \ \ \ \ \ \ x+\sum_{n=2}^{\infty}\left[\frac{(-1)^{n-1}}{n}+\frac{(-1)^n}{n-1}\right]x^n=x+\sum_{n=2}^{\infty}\frac{(-1)^nx^n}{n(n-1)},x \in (-1, \ 1].\\\\ &\ \ (6)\ 将x^2替换展开式\frac{1}{\sqrt{1+x}}=1+\sum_{n=1}^{\infty}(-1)^n\frac{1\cdot 3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot (2n-1)}{2\cdot 4\cdot 6\cdot\ \cdot\cdot\cdot\ \cdot (2n)}x^n,x \in (-1, \ 1]中的x,\\\\ &\ \ \ \ \ \ \ \ 得\frac{1}{\sqrt{1+x^2}}=1+\sum_{n=1}^{\infty}(-1)^n\frac{1\cdot 3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot(2n-1)}{2\cdot 4\cdot 6\cdot\ \cdot\cdot\cdot\ \cdot(2n)}x^{2n},x \in [-1, \ 1],从而得\frac{x}{\sqrt{1+x^2}}=\\\\ &\ \ \ \ \ \ \ \ x+\sum_{n=1}^{\infty}(-1)^n\frac{1\cdot 3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot(2n-1)}{2\cdot 4\cdot 6\cdot\ \cdot\cdot\cdot\ \cdot(2n)}x^{2n+1}=x+\sum_{n=1}^{\infty}(-1)^n\frac{2(2n)!}{(n!)^2}\left(\frac{x}{2}\right)^{2n+1},x \in [-1, \ 1]. & \end{aligned} (1) 因为ex=n=0∑∞n!xn,x∈(−∞, +∞),所以e−x=n=0∑∞n!(−1)nxn,x∈(−∞, +∞), 则2ex−e−x=21n=0∑∞n!1−(−1)nxn=n=1∑∞(2n−1)!x2n−1,x∈(−∞, +∞). (2) ln(a+x)=ln a+ln(1+ax),因为ln(1+x)=n=1∑∞n(−1)n−1xn,x∈(−1, +1], 所以ln(a+x)=ln a+n=1∑∞n(−1)n−1(ax)n,x∈(−a, +a]. (3) 因为ex=n=0∑∞n!xn,x∈(−∞, +∞),所以ax=exln a=n=0∑∞n!(xln a)n=n=0∑∞n!(ln a)nxn,x∈(−∞, +∞). (4) 因为cos x=n=0∑∞(2n)!(−1)nx2n,x∈(−∞, +∞),所以sin2 x=21−21cos 2x=21−21n=0∑∞(2n)!(−1)n(2x)2n= n=1∑∞2(2n)!(−1)n−1(2x)2n,x∈(−∞, +∞). (5) 因为ln(1+x)=n=1∑∞n(−1)n−1xn,x∈(−1, 1],所以(1+x)ln(1+x)=ln(1+x)+xln(1+x)= n=1∑∞n(−1)n−1xn+xn=1∑∞n(−1)n−1xn=n=1∑∞n(−1)n−1xn+n=1∑∞n(−1)n−1xn+1=n=1∑∞n(−1)n−1xn+n=2∑∞n−1(−1)nxn= x+n=2∑∞[n(−1)n−1+n−1(−1)n]xn=x+n=2∑∞n(n−1)(−1)nxn,x∈(−1, 1]. (6) 将x2替换展开式1+x1=1+n=1∑∞(−1)n2⋅4⋅6⋅ ⋅⋅⋅ ⋅(2n)1⋅3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)xn,x∈(−1, 1]中的x, 得1+x21=1+n=1∑∞(−1)n2⋅4⋅6⋅ ⋅⋅⋅ ⋅(2n)1⋅3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)x2n,x∈[−1, 1],从而得1+x2x= x+n=1∑∞(−1)n2⋅4⋅6⋅ ⋅⋅⋅ ⋅(2n)1⋅3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)x2n+1=x+n=1∑∞(−1)n(n!)22(2n)!(2x)2n+1,x∈[−1, 1].
3.将下列函数展开成(x−1)的幂级数,并求展开式成立的区间:\begin{aligned}&3. \ 将下列函数展开成(x-1)的幂级数,并求展开式成立的区间:&\end{aligned}3. 将下列函数展开成(x−1)的幂级数,并求展开式成立的区间:
(1)x3; (2)lgx.\begin{aligned} &\ \ (1)\ \ \sqrt{x^3};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ lg\ x. & \end{aligned} (1) x3; (2) lg x.
解:
(1)当m>0时,因(1+x)m=1+mx+m(m−1)2!x2+⋅⋅⋅+m(m−1)⋅⋅⋅(m−n+1)n!xn+⋅⋅⋅,x∈[−1,1],而x3=[1+(x−1)]32,在二项展开式中取m=32,用x−1替换x,得x3=1+32(x−1)+12!⋅32(32−1)(x−1)2+⋅⋅⋅+1n!32(32−1)⋅⋅⋅⋅⋅(32−n+1)(x−1)n+⋅⋅⋅=1+32(x−1)+∑n=0∞3⋅(−1)n1⋅3⋅5⋅⋅⋅⋅⋅(2n−1)2n+2(n+2)!(x−1)n+2=1+32(x−1)+∑n=0∞(−1)n(2n)!(n!)2⋅3(n+1)(n+2)2n(x−12)n+2,x∈[0,2].(2)lgx=lnxln10=1ln10ln[1+(x−1)],因为ln(1+x)=∑n=1∞(−1)n−1xnn,x∈(−1,1],将上式的x换成x−1,得lgx=1ln10∑n=1∞(−1)n−1(x−1)nn,x∈(0,2].\begin{aligned} &\ \ (1)\ 当m \gt 0时,因(1+x)^m=1+mx+\frac{m(m-1)}{2!}x^2+\cdot\cdot\cdot+\frac{m(m-1)\cdot\cdot\cdot(m-n+1)}{n!}x^n+\cdot\cdot\cdot,x \in [-1, \ 1],\\\\ &\ \ \ \ \ \ \ \ 而\sqrt{x^3}=[1+(x-1)]^{\frac{3}{2}},在二项展开式中取m=\frac{3}{2},用x-1替换x,得\\\\ &\ \ \ \ \ \ \ \ \sqrt{x^3}=1+\frac{3}{2}(x-1)+\frac{1}{2!}\cdot\frac{3}{2}\left(\frac{3}{2}-1\right)(x-1)^2+\cdot\cdot\cdot+\frac{1}{n!}\frac{3}{2}\left(\frac{3}{2}-1\right)\cdot\ \cdot\cdot\cdot\ \cdot\left(\frac{3}{2}-n+1\right)(x-1)^n+\cdot\cdot\cdot=\\\\ &\ \ \ \ \ \ \ \ 1+\frac{3}{2}(x-1)+\sum_{n=0}^{\infty}\frac{3\cdot(-1)^n1\cdot 3\cdot 5\cdot\ \cdot\cdot\cdot\ \cdot(2n-1)}{2^{n+2}(n+2)!}(x-1)^{n+2}=\\\\ &\ \ \ \ \ \ \ \ 1+\frac{3}{2}(x-1)+\sum_{n=0}^{\infty}(-1)^n\frac{(2n)!}{(n!)^2}\cdot\frac{3}{(n+1)(n+2)2^n}\left(\frac{x-1}{2}\right)^{n+2},x \in [0, \ 2].\\\\ &\ \ (2)\ lg\ x=\frac{ln\ x}{ln\ 10}=\frac{1}{ln\ 10}ln[1+(x-1)],因为ln(1+x)=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^n}{n},x \in (-1, \ 1],\\\\ &\ \ \ \ \ \ \ \ 将上式的x换成x-1,得lg\ x=\frac{1}{ln\ 10}\sum_{n=1}^{\infty}(-1)^{n-1}\frac{(x-1)^n}{n},x \in (0, \ 2]. & \end{aligned} (1) 当m>0时,因(1+x)m=1+mx+2!m(m−1)x2+⋅⋅⋅+n!m(m−1)⋅⋅⋅(m−n+1)xn+⋅⋅⋅,x∈[−1, 1], 而x3=[1+(x−1)]23,在二项展开式中取m=23,用x−1替换x,得 x3=1+23(x−1)+2!1⋅23(23−1)(x−1)2+⋅⋅⋅+n!123(23−1)⋅ ⋅⋅⋅ ⋅(23−n+1)(x−1)n+⋅⋅⋅= 1+23(x−1)+n=0∑∞2n+2(n+2)!3⋅(−1)n1⋅3⋅5⋅ ⋅⋅⋅ ⋅(2n−1)(x−1)n+2= 1+23(x−1)+n=0∑∞(−1)n(n!)2(2n)!⋅(n+1)(n+2)2n3(2x−1)n+2,x∈[0, 2]. (2) lg x=ln 10ln x=ln 101ln[1+(x−1)],因为ln(1+x)=n=1∑∞(−1)n−1nxn,x∈(−1, 1], 将上式的x换成x−1,得lg x=ln 101n=1∑∞(−1)n−1n(x−1)n,x∈(0, 2].
4.将函数f(x)=cosx展开成(x+π3)的幂级数.\begin{aligned}&4. \ 将函数f(x)=cos\ x展开成\left(x+\frac{\pi}{3}\right)的幂级数.&\end{aligned}4. 将函数f(x)=cos x展开成(x+3π)的幂级数.
解:
cosx=cos[(x+π3)−π3]=12cos(x+π3)+32sin(x+π3),将x+π3替换以下cosx=∑n=0∞(−1)n(2n)!x2n,sinx=∑n=0∞(−1)n(2n+1)!x2n+1中的x,得cosx=12∑n=0∞(−1)n(2n)!(x+π3)2n+32∑n=0∞(−1)n(2n+1)!(x+π3)2n+1=12∑n=0∞(−1)n[1(2n)!(x+π3)2n+3(2n+1)!(x+π3)2n+1],x∈(−∞,+∞).\begin{aligned} &\ \ cos\ x=cos\left[\left(x+\frac{\pi}{3}\right)-\frac{\pi}{3}\right]=\frac{1}{2}cos\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}sin\left(x+\frac{\pi}{3}\right),将x+\frac{\pi}{3}替换以下cos\ x=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n},\\\\ &\ \ sin\ x=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}中的x,得cos\ x=\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}\left(x+\frac{\pi}{3}\right)^{2n}+\frac{\sqrt{3}}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\left(x+\frac{\pi}{3}\right)^{2n+1}=\\\\ &\ \ \frac{1}{2}\sum_{n=0}^{\infty}(-1)^n\left[\frac{1}{(2n)!}\left(x+\frac{\pi}{3}\right)^{2n}+\frac{\sqrt{3}}{(2n+1)!}\left(x+\frac{\pi}{3}\right)^{2n+1}\right],x \in (-\infty, \ +\infty). & \end{aligned} cos x=cos[(x+3π)−3π]=21cos(x+3π)+23sin(x+3π),将x+3π替换以下cos x=n=0∑∞(2n)!(−1)nx2n, sin x=n=0∑∞(2n+1)!(−1)nx2n+1中的x,得cos x=21n=0∑∞(2n)!(−1)n(x+3π)2n+23n=0∑∞(2n+1)!(−1)n(x+3π)2n+1= 21n=0∑∞(−1)n[(2n)!1(x+3π)2n+(2n+1)!3(x+3π)2n+1],x∈(−∞, +∞).
5.将函数f(x)=1x展开成(x−3)的幂级数.\begin{aligned}&5. \ 将函数f(x)=\frac{1}{x}展开成(x-3)的幂级数.&\end{aligned}5. 将函数f(x)=x1展开成(x−3)的幂级数.
解:
因为11−x=∑n=0∞xn,x∈(−1,1),所以1x=13+x−3=13⋅11+x−33=13⋅11−(−x−33)=13⋅∑n=0∞(−x−33)n,3−x3∈(−1,1),即1x=∑n=0∞(−1)n3n+1(x−3)n,x∈(0,6).\begin{aligned} &\ \ 因为\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n,x \in (-1, \ 1),所以\frac{1}{x}=\frac{1}{3+x-3}=\frac{1}{3}\cdot \frac{1}{1+\frac{x-3}{3}}=\frac{1}{3}\cdot \frac{1}{1-\left(-\frac{x-3}{3}\right)}=\\\\ &\ \ \frac{1}{3}\cdot \sum_{n=0}^{\infty}\left(-\frac{x-3}{3}\right)^n,\frac{3-x}{3} \in (-1, \ 1),即\frac{1}{x}=\sum_{n=0}^{\infty}\frac{(-1)^n}{3^{n+1}}(x-3)^n,x \in (0, \ 6). & \end{aligned} 因为1−x1=n=0∑∞xn,x∈(−1, 1),所以x1=3+x−31=31⋅1+3x−31=31⋅1−(−3x−3)1= 31⋅n=0∑∞(−3x−3)n,33−x∈(−1, 1),即x1=n=0∑∞3n+1(−1)n(x−3)n,x∈(0, 6).
6.将函数f(x)=1x2+3x+2展开成(x+4)的幂级数.\begin{aligned}&6. \ 将函数f(x)=\frac{1}{x^2+3x+2}展开成(x+4)的幂级数.&\end{aligned}6. 将函数f(x)=x2+3x+21展开成(x+4)的幂级数.
解:
1x2+3x+2=1(x+1)(x+2)=1x+1−1x+2,1x+1=1−3+(x+4)=−13⋅11−x+43=−13∑n=0∞(x+43)n,x+43∈(−1,1),即x∈(−7,−1),1x+2=1−2+(x+4)=−12⋅11−x+42=−12∑n=0∞(x+42)n,x+42∈(−1,1),即x∈(−6,−2),则1x2+3x+2=−13∑n=0∞(x+43)n+12∑n=0∞(x+42)n=∑n=0∞(12n+1−13n+1)(x+4)n,x∈(−7,−1)∩(−6,−2)=(−6,−2).\begin{aligned} &\ \ \frac{1}{x^2+3x+2}=\frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2},\\\\ &\ \ \frac{1}{x+1}=\frac{1}{-3+(x+4)}=-\frac{1}{3}\cdot \frac{1}{1-\frac{x+4}{3}}=-\frac{1}{3}\sum_{n=0}^{\infty}\left(\frac{x+4}{3}\right)^n,\frac{x+4}{3} \in (-1, \ 1),即x \in (-7, \ -1),\\\\ &\ \ \frac{1}{x+2}=\frac{1}{-2+(x+4)}=-\frac{1}{2}\cdot\frac{1}{1-\frac{x+4}{2}}=-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{x+4}{2}\right)^n,\frac{x+4}{2} \in (-1, \ 1),即x \in (-6, \ -2),\\\\ &\ \ 则\frac{1}{x^2+3x+2}=-\frac{1}{3}\sum_{n=0}^{\infty}\left(\frac{x+4}{3}\right)^n+\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{x+4}{2}\right)^n=\sum_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}-\frac{1}{3^{n+1}}\right)(x+4)^n,\\\\ &\ \ x \in (-7, \ -1) \cap (-6, \ -2)=(-6, \ -2). & \end{aligned} x2+3x+21=(x+1)(x+2)1=x+11−x+21, x+11=−3+(x+4)1=−31⋅1−3x+41=−31n=0∑∞(3x+4)n,3x+4∈(−1, 1),即x∈(−7, −1), x+21=−2+(x+4)1=−21⋅1−2x+41=−21n=0∑∞(2x+4)n,2x+4∈(−1, 1),即x∈(−6, −2), 则x2+3x+21=−31n=0∑∞(3x+4)n+21n=0∑∞(2x+4)n=n=0∑∞(2n+11−3n+11)(x+4)n, x∈(−7, −1)∩(−6, −2)=(−6, −2).