%蒙特卡罗仿真(Rayleigh信道,软判决,2FSK)
%
Eb=2; %每比特的能量,能量越大,卷积译码的误码率越小
k=1;
G=[1 0 1;1 1 1];
input=[1 0 1 0 1 1 1 0];
dsource=cnv_encd(G,k,input);
N=length(dsource);
% n=size(G,1); %得到码字长度
% Ec=k*Eb/n; %得到码元能量
channel_output=zeros(1,2*N);
% FSK调制
Tb=1;
f1=1000/Tb;
f2=f1+1/Tb;
%f2=1500/Tb;
phi=pi/4;
NN=500;
t=0:Tb/(NN-1):Tb;
u1=cos(2*pi*f1*t); %若发送0,则已调信号为u1
u2=cos(2*pi*f2*t); %若发送1,则已调信号为u2
% 通过Rayleigh信道
chan = rayleighchan(1/1000,0)
for j=1:N
if(dsource(j)==0)
r=cos(2*pi*f1*t+phi);
y= filter(chan,r); %衰落
else
r=cos(2*pi*f2*t+phi);
y= filter(chan,r); %衰落
end;
%计算相关输出
v1=sin(2*pi*f1*t);
v2=sin(2*pi*f2*t);
r1c(1)=y(1)*u1(1);
r1s(1)=y(1)*v1(1);
r2c(1)=y(1)*u2(1);
r2s(1)=y(1)*v2(1);
for k=2:NN
r1c(k)=r1c(k-1)+y(k)*u1(k);
r1s(k)=r1s(k-1)+y(k)*v1(k);
r2c(k)=r2c(k-1)+y(k)*u2(k);
r2s(k)=r2s(k-1)+y(k)*v2(k);
end;
%判决变量
r1=r1c(NN)^2+r1s(NN)^2;
r2=r2c(NN)^2+r2s(NN)^2;
% if(abs(r1)>abs(r2)) %判决
% res(j)=0;
% else
% res(j)=1;
% end;
channel_output(1,2*j-1)=abs(r1);
channel_output(1,2*j)=abs(r2); %输如到然判决译码器
end;
%软判决维特比译码
k=1;
[decoder_output,survivor_state,cumulated_metric]=soft_2FSK_viterbi(G,k,channel_output);
D33