python环境的yolov11.rknn物体检测

news/2025/2/21 7:23:38/

1.首先是我手里生成的一个yolo11的.rknn模型:

2.比对一下yolov5的模型:

 

2.1 yolov5模型的后期处理:

    outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])np.save('./onnx_yolov5_0.npy', outputs[0])np.save('./onnx_yolov5_1.npy', outputs[1])np.save('./onnx_yolov5_2.npy', outputs[2])print('done')# post processinput0_data = outputs[0]input1_data = outputs[1]input2_data = outputs[2]input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))input_data = list()input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))

然后:

def yolov5_post_process(input_data):masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],[59, 119], [116, 90], [156, 198], [373, 326]]boxes, classes, scores = [], [], []for input, mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)

然后:

def process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = input[..., 4]box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = input[..., 5:]box_xy = input[..., :2]*2 - 0.5col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy *= int(IMG_SIZE/grid_h)box_wh = pow(input[..., 2:4]*2, 2)box_wh = box_wh * anchorsbox = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probs

3.修改1 - 基于昨天在宿主机上成功执行的onnx代码:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import sys
from math import exp
import cv2
import numpy as npROOT = os.getcwd()
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))RKNN_MODEL = r'/home/firefly/app/models/sim_moonpie-640-640_rk3588.rknn'
IMG_PATH = '/home/firefly/app/images/cake26.jpg'
QUANTIZE_ON = FalseCLASSES = ['moonpie', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush', 'moonpie']meshgrid = []class_num = len(CLASSES)
headNum = 3
strides = [8, 16, 32]
mapSize = [[80, 80], [40, 40], [20, 20]]
nmsThresh = 0.45
objectThresh = 0.5input_imgH = 640
input_imgW = 640from rknn.api import RKNN 
def rk3588_detect(model, pic, classes):rknn = RKNN(verbose=True)'''# model configrknn.config(mean_values=[[0, 0, 0]],std_values=[[255,255,255]],quant_img_RGB2BGR=False,target_platform='rk3588')'''rknn.load_rknn(path=model)rknn.init_runtime(target="rk3588", core_mask=RKNN.NPU_CORE_AUTO)outputs = rknn.inference(inputs=[pic], data_format=['nhwc'])return outputsclass DetectBox:def __init__(self, classId, score, xmin, ymin, xmax, ymax):self.classId = classIdself.score = scoreself.xmin = xminself.ymin = yminself.xmax = xmaxself.ymax = ymaxclass YOLOV11DetectObj:def __init__(self):passdef GenerateMeshgrid(self):for index in range(headNum):for i in range(mapSize[index][0]):for j in range(mapSize[index][1]):meshgrid.append(j + 0.5)meshgrid.append(i + 0.5)def IOU(self, xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2):xmin = max(xmin1, xmin2)ymin = max(ymin1, ymin2)xmax = min(xmax1, xmax2)ymax = min(ymax1, ymax2)innerWidth = xmax - xmininnerHeight = ymax - ymininnerWidth = innerWidth if innerWidth > 0 else 0innerHeight = innerHeight if innerHeight > 0 else 0innerArea = innerWidth * innerHeightarea1 = (xmax1 - xmin1) * (ymax1 - ymin1)area2 = (xmax2 - xmin2) * (ymax2 - ymin2)total = area1 + area2 - innerAreareturn innerArea / totaldef NMS(self, detectResult):predBoxs = []sort_detectboxs = sorted(detectResult, key=lambda x: x.score, reverse=True)for i in range(len(sort_detectboxs)):xmin1 = sort_detectboxs[i].xminymin1 = sort_detectboxs[i].yminxmax1 = sort_detectboxs[i].xmaxymax1 = sort_detectboxs[i].ymaxclassId = sort_detectboxs[i].classIdif sort_detectboxs[i].classId != -1:predBoxs.append(sort_detectboxs[i])for j in range(i + 1, len(sort_detectboxs), 1):if classId == sort_detectboxs[j].classId:xmin2 = sort_detectboxs[j].xminymin2 = sort_detectboxs[j].yminxmax2 = sort_detectboxs[j].xmaxymax2 = sort_detectboxs[j].ymaxiou = IOU(xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2)if iou > nmsThresh:sort_detectboxs[j].classId = -1return predBoxsdef sigmoid(self, x):return 1 / (1 + exp(-x))def postprocess(self, out, img_h, img_w):print('postprocess ... ')detectResult = []output = []for i in range(len(out)):print(out[i].shape)output.append(out[i].reshape((-1)))scale_h = img_h / input_imgHscale_w = img_w / input_imgWgridIndex = -2cls_index = 0cls_max = 0for index in range(headNum):reg = output[index * 2 + 0]cls = output[index * 2 + 1]for h in range(mapSize[index][0]):for w in range(mapSize[index][1]):gridIndex += 2if 1 == class_num:cls_max = sigmoid(cls[0 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w])cls_index = 0else:for cl in range(class_num):cls_val = cls[cl * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w]if 0 == cl:cls_max = cls_valcls_index = clelse:if cls_val > cls_max:cls_max = cls_valcls_index = clcls_max = self.sigmoid(cls_max)if cls_max > objectThresh:regdfl = []for lc in range(4):sfsum = 0locval = 0for df in range(16):temp = exp(reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w])reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w] = tempsfsum += tempfor df in range(16):sfval = reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w] / sfsumlocval += sfval * dfregdfl.append(locval)x1 = (meshgrid[gridIndex + 0] - regdfl[0]) * strides[index]y1 = (meshgrid[gridIndex + 1] - regdfl[1]) * strides[index]x2 = (meshgrid[gridIndex + 0] + regdfl[2]) * strides[index]y2 = (meshgrid[gridIndex + 1] + regdfl[3]) * strides[index]xmin = x1 * scale_wymin = y1 * scale_hxmax = x2 * scale_wymax = y2 * scale_hxmin = xmin if xmin > 0 else 0ymin = ymin if ymin > 0 else 0xmax = xmax if xmax < img_w else img_wymax = ymax if ymax < img_h else img_hbox = DetectBox(cls_index, cls_max, xmin, ymin, xmax, ymax)detectResult.append(box)# NMSprint('detectResult:', len(detectResult))predBox = self.NMS(detectResult)return predBoxdef precess_image(self, img_src, resize_w, resize_h):print(f'{type(img_src)}')image = cv2.resize(img_src, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = image.astype(np.float32)image /= 255.0return imagedef detect(self, img_path):self.GenerateMeshgrid()orig = cv2.imread(img_path)if orig is None:print(f"无法读取图像: {img_path}")returnimg_h, img_w = orig.shape[:2]image = self.precess_image(orig, input_imgW, input_imgH)image = image.transpose((2, 0, 1))image = np.expand_dims(image, axis=0)#image = np.ones((1, 3, 640, 640), dtype=np.uint8)# print(image.shape)#ort_session = ort.InferenceSession(ONNX_MODEL)#pred_results = (ort_session.run(None, {'data': image}))pred_results = rk3588_detect(RKNN_MODEL, image, CLASSES)out = []for i in range(len(pred_results)):out.append(pred_results[i])predbox = self.postprocess(out, img_h, img_w)print('obj num is :', len(predbox))for i in range(len(predbox)):xmin = int(predbox[i].xmin)ymin = int(predbox[i].ymin)xmax = int(predbox[i].xmax)ymax = int(predbox[i].ymax)classId = predbox[i].classIdscore = predbox[i].scorecv2.rectangle(orig, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)ptext = (xmin, ymin)title = CLASSES[classId] + "%.2f" % scorecv2.putText(orig, title, ptext, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, cv2.LINE_AA)cv2.imwrite('./test_onnx_result.jpg', orig)if __name__ == '__main__':print('This is main ....')img_path = IMG_PATHobj = YOLOV11DetectObj()obj.detect(img_path)

输出不对:

firefly@firefly:~/app/test$ python3 ./detect_rk3588.py
This is main ....
<class 'numpy.ndarray'>
I rknn-toolkit2 version: 2.3.0
I target set by user is: rk3588
postprocess ... 
(1, 64, 80, 80)
(1, 81, 80, 80)
(1, 64, 40, 40)
(1, 81, 40, 40)
(1, 64, 20, 20)
(1, 81, 20, 20)
detectResult: 0
obj num is : 0 

4.修改2 - 基于yolov5.rknn代码

4.1 似乎有如下映射关系:

似乎:yolo11.output5 == yolo5.output2,
           yolo11.output3 == yolo5.output1,
           yolo11.output1 == yolo5.output

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import sys
import urllib
import traceback
import time
import numpy as np
import cv2
from rknn.api import RKNNROOT = os.getcwd()
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))# Model from https://github.com/airockchip/rknn_model_zoo  yolov11->selftrained. yolo11s?
ONNX_MODEL = r'/home/firefly/app/models/yolo11_selfgen.onnx'
RKNN_MODEL = r'/home/firefly/app/models/new_moonpie_yolo11_640x640.rknn'
IMG_PATH = r'/home/firefly/app/images/cake26.jpg'
QUANTIZE_ON = True
DATASET=r'./dataset.txt'CLASSES = ['moonpie', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush']meshgrid = []class_num = len(CLASSES)
headNum = 3
strides = [8, 16, 32]
mapSize = [[80, 80], [40, 40], [20, 20]]
input_imgH = 640
input_imgW = 640
IMG_SIZE = input_imgH
QUANTIZE_ON = TrueOBJ_THRESH = 0.25
NMS_THRESH = 0.45def xywh2xyxy(x):# Convert [x, y, w, h] to [x1, y1, x2, y2]y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn ydef process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = input[..., 4]box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = input[..., 5:]box_xy = input[..., :2]*2 - 0.5col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy *= int(IMG_SIZE/grid_h)box_wh = pow(input[..., 2:4]*2, 2)box_wh = box_wh * anchorsbox = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!# Argumentsboxes: ndarray, boxes of objects.box_confidences: ndarray, confidences of objects.box_class_probs: ndarray, class_probs of objects.# Returnsboxes: ndarray, filtered boxes.classes: ndarray, classes for boxes.scores: ndarray, scores for boxes."""boxes = boxes.reshape(-1, 4)box_confidences = box_confidences.reshape(-1)box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])_box_pos = np.where(box_confidences >= OBJ_THRESH)boxes = boxes[_box_pos]box_confidences = box_confidences[_box_pos]box_class_probs = box_class_probs[_box_pos]class_max_score = np.max(box_class_probs, axis=-1)classes = np.argmax(box_class_probs, axis=-1)_class_pos = np.where(class_max_score >= OBJ_THRESH)boxes = boxes[_class_pos]classes = classes[_class_pos]scores = (class_max_score* box_confidences)[_class_pos]return boxes, classes, scoresdef nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Argumentsboxes: ndarray, boxes of objects.scores: ndarray, scores of objects.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]y = boxes[:, 1]w = boxes[:, 2] - boxes[:, 0]h = boxes[:, 3] - boxes[:, 1]areas = w * horder = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= NMS_THRESH)[0]order = order[inds + 1]keep = np.array(keep)return keepdef yolov5_post_process(input_data):masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],[59, 119], [116, 90], [156, 198], [373, 326]]boxes, classes, scores = [], [], []for input, mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)boxes = np.concatenate(boxes)boxes = xywh2xyxy(boxes)classes = np.concatenate(classes)scores = np.concatenate(scores)nboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])if not nclasses and not nscores:return None, None, Noneboxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)return boxes, classes, scoresdef draw(image, boxes, scores, classes):"""Draw the boxes on the image.# Argument:image: original image.boxes: ndarray, boxes of objects.classes: ndarray, classes of objects.scores: ndarray, scores of objects.all_classes: all classes name."""print("{:^12} {:^12}  {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))print('-' * 50)for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxtop = int(top)left = int(left)right = int(right)bottom = int(bottom)cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[cl], score, top, left, right, bottom))def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)def detect_on_ubuntu(onnx_model_path=ONNX_MODEL, rknn_path=RKNN_MODEL, image_path=IMG_PATH, classes=CLASSES):# Create RKNN objectrknn = RKNN(verbose=True)# pre-process configprint('--> Config model')rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')print('done')# Load ONNX modelprint('--> Loading model')ret = rknn.load_onnx(model=onnx_model_path)if ret != 0:print('Load model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)if ret != 0:print('Build model failed!')exit(ret)print('done')# Export RKNN modelprint('--> Export rknn model')ret = rknn.export_rknn(rknn_path)if ret != 0:print('Export rknn model failed!')exit(ret)print('done')# Init runtime environmentprint('--> Init runtime environment')ret = rknn.init_runtime()if ret != 0:print('Init runtime environment failed!')exit(ret)print('done')# Set inputsimg = cv2.imread(image_path)# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))# Inferenceprint('--> Running model')img2 = np.expand_dims(img, 0)np.save('./raw_yolov11_in.npy', [img2])outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])np.save('./onnx_yolov11_0_raw.npy', outputs[1])np.save('./onnx_yolov11_1_raw.npy', outputs[3])np.save('./onnx_yolov11_2_raw.npy', outputs[5])print('done')# post processinput0_data = outputs[1]input1_data = outputs[3]input2_data = outputs[5]# 创建一个全零数组,用于填充# 计算需要填充的通道数pad_channels = 255 - len(classes)padding = np.zeros((1, pad_channels, 80, 80), dtype=np.float32)input0_data = np.concatenate((input0_data, padding), axis=1)padding = np.zeros((1, pad_channels, 40, 40), dtype=np.float32)input1_data = np.concatenate((input1_data, padding), axis=1)padding = np.zeros((1, pad_channels, 20, 20), dtype=np.float32)input2_data = np.concatenate((input2_data, padding), axis=1)np.save('./onnx_yolov11_0.npy', input0_data)np.save('./onnx_yolov11_1.npy', input1_data)np.save('./onnx_yolov11_2.npy', input2_data)input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))input_data = list()input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))boxes, classes, scores = yolov5_post_process(input_data)img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)if boxes is not None:draw(img_1, boxes, scores, classes)cv2.imwrite('result.jpg', img_1)print('Save results to result.jpg!')rknn.release()def precess_image(img_src, resize_w, resize_h):orig = cv2.imread(img_src)if orig is None:print(f"无法读取图像: {img_path}")returnimg_h, img_w = orig.shape[:2]print(f'{type(orig)}')image = cv2.resize(orig, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = image.astype(np.float32)image /= 255.0'''# Set inputsimg = cv2.imread(IMG_PATH)# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))# Inferenceprint('--> Running model')img2 = np.expand_dims(img, 0)'''return imagedef detect_on_rk3588(rknn_path=RKNN_MODEL, image_path=IMG_PATH, classes=CLASSES):# Create RKNN objectrknn = RKNN(verbose=True)# pre-process configprint('--> Config model')rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')print('done')# Load ONNX modelret = rknn.load_rknn(rknn_path)if ret != 0:print('Export rknn model failed!')exit(ret)print('done')# Init runtime environmentprint('--> Init runtime environment')ret = rknn.init_runtime(target="rk3588", core_mask=RKNN.NPU_CORE_AUTO)if ret != 0:print('Init runtime environment failed!')exit(ret)print('done')img2 = precess_image(image_path, input_imgW, input_imgH)np.save('./raw_yolov11_in.npy', [img2])outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])np.save('./raw_yolov11_0.npy', outputs[1])np.save('./raw_yolov11_1.npy', outputs[3])np.save('./raw_yolov11_2.npy', outputs[5])print('done')# 创建一个全零数组,用于填充# 计算需要填充的通道数pad_channels = 255 - len(classes)padding = np.zeros((1, pad_channels, 80, 80), dtype=np.float32)input0_data = np.concatenate((input0_data, padding), axis=1)padding = np.zeros((1, pad_channels, 40, 40), dtype=np.float32)input1_data = np.concatenate((input1_data, padding), axis=1)padding = np.zeros((1, pad_channels, 20, 20), dtype=np.float32)input2_data = np.concatenate((input2_data, padding), axis=1)np.save('./modified_yolov11_0.npy', input0_data)np.save('./modified_yolov11_1.npy', input1_data)np.save('./modified_yolov11_2.npy', input2_data)input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))input_data = list()input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))boxes, classes, scores = yolov5_post_process(input_data)img = cv2.imread(image_path)img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)if boxes is not None:draw(img_1, boxes, scores, classes)cv2.imwrite('rknn_detect_result.jpg', img_1)print('Save results to rknn_detect_result.jpg!')else:print('target can not be found!')rknn.release()if __name__ == '__main__':detect_on_ubuntu(ONNX_MODEL, RKNN_MODEL, IMG_PATH, CLASSES)#detect_on_rk3588(RKNN_MODEL, IMG_PATH, CLASSES)

 5.结论:

最终通过仔细核对yolov5, yolo11, onnx几个模型的输入输出参数,发现了这样的事情:

  • yolov11 的输出参数有6个,大概率,按照上面的结论是,1,3,5相当于原来的输出参数0,1,2
  • yolov11的输出的6个参数,第二维尺寸,现在不是255(-1)个,而是len(classes)个。
  • 我的问题在于我在训练时把classes设置为81,而在导出.rknn时,仍然导出为80.所以,结果就是onnx模式访问正常,而.rknn方式访问错误。
  • yolo detect代码中的.save是瑞芯微的那些同志在调试接口时留下的一些调试语句,它们不必存在。
  • rknn代码输入输出参数建议u8化,在simluation环境传递的是float32。这个修改结束,应该速度会快不少。
  • 还有,yolo detect的matrix pack in pack out时,效率很低,他还在进行float转换。这个我没有仔细看代码,理论上,onnx的识别信息析取是更快的。

还在测试。如果确认最终稿的结论成立。我会在这个帖子里留下标记。上面的两端代码没有大问题,我在测试成功后会更新,现在就是对的。


http://www.ppmy.cn/news/1573368.html

相关文章

面试完整回答:SQL 分页查询中 limit 500000,10和 limit 10 速度一样快吗?

首先&#xff1a;在 SQL 分页查询中&#xff0c;LIMIT 500000, 10 和 LIMIT 10 的速度不会一样快&#xff0c;以下是原因和优化建议&#xff1a; 性能差异的原因 LIMIT 10&#xff1a; 只需要扫描前 10 条记录&#xff0c;然后返回结果。 性能非常高&#xff0c;因为数据库只…

爬取网站内容转为markdown 和 html(通常模式)

我们遇到一些自己喜欢内容&#xff0c;想保存下来&#xff0c;手动复制粘贴很麻烦&#xff0c;我们使用 python 来爬取这些内容。 一、代码 downlod.py import os import requests from bs4 import BeautifulSoup from urllib.parse import urljoin# 目标网页&#xff08;可…

加强地面塌陷隐患防治,构筑城市地质安全防线

随着我国城市现代化建设进程的加快&#xff0c;城市基础建设和房地产开发呈现出高速发展的态势。然而&#xff0c;在这一繁荣景象的背后&#xff0c;城市地面塌陷问题却日益凸显&#xff0c;成为影响城市地质环境安全的重要因素之一。与传统的地质灾害相比&#xff0c;城市地面…

golang channel底层实现?

底层数据实现 type hchan struct { qcount uint // 当前队列中的元素数量 dataqsiz uint // 环形队列的大小 buf unsafe.Pointer // 指向环形队列的指针 elemsize uint16 // 元素大小 closed uint32 // chan…

二叉树链式结构:数据结构中的灵动之舞

目录 前言 一、 前置说明 二、二叉树的遍历 2.1前序遍历 2.2中序遍历 2.3 后序遍历 2.4层序遍历 三、二叉树的遍历的应用 3.1二叉树节点个数&#xff1a; 3.2二叉树的高度 3.3 二叉树第k层的节点的个数 3.4二叉树的查找 总结 前言 在数据结构的世界里&#xff0c;二叉…

docker 安装 Rabbitmq 详解

在平常的开发工作中&#xff0c;我们经常会使用到 rabbitmq&#xff0c;rabbitmq 主要可以进行应用解耦、异步通信、流量削峰、负载均衡、消息持久化、死信队列等。比如商城系统&#xff0c;下单后&#xff0c;通过消息队列通知库存系统、积分系统、物流系统等。发送短信时通过…

3D与2D机器视觉机械臂引导的区别

3D与2D机器视觉在机械臂引导中的主要区别如下&#xff1a; 数据维度 2D视觉&#xff1a;仅处理平面图像&#xff0c;提供X、Y坐标信息&#xff0c;无法获取深度&#xff08;Z轴&#xff09;数据。 3D视觉&#xff1a;处理三维空间数据&#xff0c;提供X、Y、Z坐标及物体的姿态…

嵌入式音视频开发(三)嵌入式音视频开发(三)直播协议及编码器

系列文章目录 嵌入式音视频开发&#xff08;零&#xff09;移植ffmpeg及推流测试 嵌入式音视频开发&#xff08;一&#xff09;ffmpeg框架及内核解析 嵌入式音视频开发&#xff08;二&#xff09;ffmpeg音视频同步 嵌入式音视频开发&#xff08;三&#xff09;直播协议及编码器…