常见的限流算法

news/2024/12/21 22:52:03/

限流算法是用于控制访问频率、保护系统免受过载攻击的重要手段。常见的限流算法有以下几种,每种算法都有不同的应用场景和优缺点。下面是几种常见的限流算法的详细介绍:

1. 计数器算法(Counter)

原理

计数器算法是最简单的限流算法。它在固定的时间窗口内记录请求的次数,一旦请求次数达到预设的上限,后续请求会被拒绝。

实现步骤
  • 设置一个时间窗口(例如 1 秒、1 分钟等)。
  • 使用一个计数器记录在当前时间窗口内的请求数量。
  • 如果计数器达到限制次数,则拒绝后续请求;否则增加计数器。
  • 当时间窗口结束时,重置计数器。
优点
  • 实现简单,适合处理短时间内的高并发请求。
缺点
  • 临界问题:在时间窗口的边界处可能出现"流量突发",例如在窗口末尾和下一个窗口的开始时连续发出大量请求。
使用场景

适用于简单的限流场景,比如 API 接口每秒最多允许多少次请求。

代码示例(伪代码)
 

java

复制代码

class CounterLimiter { private int maxRequests; private int currentCount; private long windowStart; private long windowDuration; public boolean allowRequest() { long now = System.currentTimeMillis(); if (now - windowStart > windowDuration) { windowStart = now; currentCount = 0; } if (currentCount < maxRequests) { currentCount++; return true; } else { return false; } } }

2. 滑动窗口算法(Sliding Window)

原理

滑动窗口算法是对计数器算法的一种优化,它将时间窗口进一步划分为多个小的时间片段,从而避免计数器算法的临界问题。每个小窗口内维护一个计数器,当请求到达时,滑动窗口根据当前时间计算跨越的时间片段,并更新计数器。

实现步骤
  • 将大时间窗口(如 1 分钟)分成多个小时间窗口(如 10 秒),并为每个小时间窗口维护请求计数。
  • 每次请求到达时,判断它属于哪个小窗口,并更新相应计数器。
  • 同时计算过去的所有小窗口总请求数,如果总数超过限流阈值,则拒绝请求。
优点
  • 缓解了计数器算法的临界问题,流量分布更加平滑。
缺点
  • 实现相对复杂,需要额外的存储空间维护多个小时间窗口。
使用场景

适合希望更加平滑限流的场景,尤其是对流量有一定均匀要求的服务。

代码示例(伪代码)
 

java

复制代码

class SlidingWindowLimiter { private int[] windows; private long windowSize; private int maxRequests; public boolean allowRequest() { long now = System.currentTimeMillis(); int currentWindowIndex = getWindowIndex(now); updateWindow(now); int totalRequests = getTotalRequests(); if (totalRequests < maxRequests) { windows[currentWindowIndex]++; return true; } else { return false; } } // 辅助方法省略 }

3. 漏桶算法(Leaky Bucket)

原理

漏桶算法可以看作是一个水桶模型,桶的容量代表系统能处理的最大请求数,请求是向桶中注水,水以固定速率流出。如果桶满了,则会丢弃新的请求。

实现步骤
  • 创建一个固定容量的桶。
  • 请求到达时将其放入桶中,桶以固定的速率处理请求。
  • 如果桶已满,拒绝新请求。
优点
  • 请求处理速率是固定的,能够很好地平滑突发流量。
缺点
  • 固定处理速率可能无法适应某些突发流量大的场景,可能导致部分请求被丢弃。
使用场景

适用于处理具有固定速率的请求处理场景,如网络流量控制等。

代码示例(伪代码)
 

java

复制代码

class LeakyBucketLimiter { private int bucketSize; private long lastLeakTime; private int currentWater; private int leakRate; public boolean allowRequest() { long now = System.currentTimeMillis(); leak(now); if (currentWater < bucketSize) { currentWater++; return true; } else { return false; } } private void leak(long now) { int leakedWater = (int) ((now - lastLeakTime) * leakRate); currentWater = Math.max(0, currentWater - leakedWater); lastLeakTime = now; } }

4. 令牌桶算法(Token Bucket)

原理

令牌桶算法类似于漏桶算法,但它允许一定程度的突发流量。系统以固定的速率生成令牌,令牌存放在桶中。每次请求需要从桶中获取令牌,如果桶中有足够的令牌,则允许请求通过,否则拒绝。

实现步骤
  • 设置一个容量为 bucketSize 的桶,用于存储令牌。
  • 系统以固定速率生成令牌,如果桶未满,令牌将被加入桶中。
  • 请求到达时,尝试从桶中获取令牌,如果有足够的令牌则允许请求,否则拒绝。
优点
  • 支持突发流量,同时保证了整体请求处理的速率。
缺点
  • 实现略微复杂,需要维护生成令牌的过程。
使用场景

适合处理偶发性高并发的场景,如 API 限流和保护下游服务。

代码示例(伪代码)
 

java

复制代码

class TokenBucketLimiter { private int bucketSize; private int tokens; private int refillRate; private long lastRefillTime; public boolean allowRequest() { refill(); if (tokens > 0) { tokens--; return true; } else { return false; } } private void refill() { long now = System.currentTimeMillis(); int newTokens = (int) ((now - lastRefillTime) * refillRate); tokens = Math.min(bucketSize, tokens + newTokens); lastRefillTime = now; } }

5. Redis 计数限流

原理

Redis 可以通过其 INCREXPIRE 命令实现简单高效的限流。每次请求到达时,使用 INCR 增加 Redis 中的计数器,如果计数器超过阈值,则拒绝请求。同时,使用 EXPIRE 为计数器设置过期时间。

实现步骤
  • 每个请求到来时对 Redis 中的计数器进行 INCR
  • 如果计数器在一个时间窗口内超过设定的阈值,则限流。
  • EXPIRE 命令设置计数器的过期时间,以实现限流的时间窗口控制。
优点
  • 分布式环境中非常适合,支持高并发请求的计数和过期时间管理。
缺点
  • Redis 需要额外的存储和网络开销。
使用场景

适用于分布式系统中的限流,尤其是在 API 网关和微服务架构中。

代码示例(伪代码)
 

java

复制代码

class RedisRateLimiter { private RedisClient redis; private String key; private int maxRequests; private int windowTime; public boolean allowRequest() { int count = redis.incr(key); if (count == 1) { redis.expire(key, windowTime); } return count <= maxRequests; } }

总结

算法优点缺点使用场景
计数器算法实现简单,适合小型项目临界点可能导致突发流量简单限流
滑动窗口算法平滑计数器算法的缺点,避免流量突发需要更多的存储空间和实现复杂度流量分布较平滑的场景
漏桶算法固定处理速率,流量控制稳定突发流量支持不佳,可能丢弃请求固定速率的服务
令牌桶算法支持突发流量,保证请求处理的平滑实现复杂,维护令牌生成支持突发流量的限流场景
Redis 限流分布式限流简单高效需要依赖 Redis,增加网络开销

http://www.ppmy.cn/news/1527055.html

相关文章

项目实训:CSS基本布局理解——WEB开发系列38

对CSS学习已经接近尾声&#xff0c;下面你可以对以下两道“小卡拉米”测试进行测试下CSS理解程度。 题 1&#xff1a;基于栅格布局的现代博客首页设计 题目要求&#xff1a; 创建一个博客首页布局&#xff0c;包含一个顶部导航栏、一个主要的内容区域&#xff08;左侧为博客文…

深入了解C语言的内核--数据在内存中的存储

前言&#xff1a;新手开始学C语言&#xff0c;首先学习的是语法&#xff0c;在懂语法的基础上&#xff0c;在去思考解决问题的方法。大家应该也听说过c语言是最接近底层的编程语言吧&#xff0c;所以我认为最重要的是要理解C语言的内核--1.栈帧空间的销毁和创建 2.数据在内存中…

golang中连接达梦数据库使用域名来代替IP时会出现解析问题

中间件使用gorm driverName : "dm" dataSourceName : fmt.Sprintf("dm://%s:%s%s:%s/SYSDBA?charsetutf8&parseTimetrue", config.Database.Username, config.Database.Password, config.Database.Address, config.Database.Port)config.Database.Ad…

注意!Facebook已移除细分定位排除受众的功能

上月&#xff0c;Meta发布更新将移除细分定位排除受众的功能&#xff0c;1月31前现有的使用细分定位排除条件的广告仍可继续投放&#xff0c;但新建广告无法使用细分定位排除功能&#xff0c;1月31后所有使用细分定位排除条件的广告都将无法投放&#xff0c;这就意味着广告主们…

django 通过地址访问本地文件

django 通过地址访问本地文件 在Django中&#xff0c;如果你想通过URL访问本地文件&#xff0c;你可以使用Django的serve视图。首先&#xff0c;你需要配置你的urls.py来匹配文件存储的路径&#xff0c;并且确保文件存储在你的本地文件系统中。 以下是一个简单的例子&#xff…

春秋云境之CVE-2022-30887

一.靶场环境 1.下载靶场环境 根据题目提示&#xff0c;此靶场存在文件上传漏洞。 2.启动靶场环境 我们可以看到是一个登录页面&#xff0c;我们尝试进行登录 二.登录页面 1.尝试进行登录 我们发现用户名必须是邮箱&#xff0c;那么弱口令肯定不行&#xff0c;我们可以看到…

python学习第八节:爬虫的初级理解

python学习第八节&#xff1a;爬虫的初级理解 爬虫说明&#xff1a;爬虫准备工作&#xff1a;分析网站url分析网页内容 爬虫获取数据&#xff1a;1.使用urllib库发起一个get请求2.使用urllib库发起一个post请求3.网页超时处理4.简单反爬虫绕过5.获取响应参数6.完整请求代码 解析…

2024 VMpro 虚拟机中如何给Ubuntu Linux操作系统配置联网

现在这是一个联网的状态 可以在商店里面下载东西 也能ping成功 打开虚拟网络编辑器 放管理员权限 进行设置的更改 选择DNS设置 按提示修改即可 注意的是首选的DNS服务器必须是114.114.114.114 原因 这边刚刚去查了一下 114.114.114.114 是国内的IP地址 8.8.8.8 是国外的I…