python网络爬虫(四)——实战练习

news/2024/11/9 16:43:04/

0.为什么要学习网络爬虫

  深度学习一般过程:
在这里插入图片描述
  收集数据,尤其是有标签、高质量的数据是一件昂贵的工作。
  爬虫的过程,就是模仿浏览器的行为,往目标站点发送请求,接收服务器的响应数据,提取需要的信息,并进行保存的过程。
  Python为爬虫的实现提供了工具:requests模块、BeautifulSoup库

1.爬虫练习前言

  本次实践使用Python来爬取百度百科中《青春有你2》所有参赛选手的信息。
  数据获取:https://baike.baidu.com/item/青春有你第二季
在这里插入图片描述

普通用户:
  打开浏览器 --> 往目标站点发送请求 --> 接收响应数据 --> 渲染到页面上。

爬虫程序:
   模拟浏览器 --> 往目标站点发送请求 --> 接收响应数据 --> 提取有用的数据 --> 保存到本地/数据库。

  本实践中将会使用以下两个模块,首先对这两个模块简单了解以下:

request模块:

  requests是python实现的简单易用的HTTP库,官网地址:http://cn.python-requests.org/zh_CN/latest/
  requests.get(url)可以发送一个http get请求,返回服务器响应内容。

BeautifulSoup库:

  BeautifulSoup是一个可以从HTML或XML文件中提取数据的Python库。
  网址:https://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/
  BeautifulSoup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,其中一个是 lxml。
  BeautifulSoup(markup, “html.parser”)或者BeautifulSoup(markup,
“lxml”),推荐使用lxml作为解析器,因为效率更高。

2.程序代码

python">import json
import re
import requests
import datetime
from bs4 import BeautifulSoup
from urllib import parse
import ostoday = datetime.date.today().strftime('%Y%m%d')def crawl_wiki_data():"""爬取百度百科中《青春有你2》中参赛选手信息,返回html"""headers = {#'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'#'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32''User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0'}url='https://baike.baidu.com/item/青春有你第二季'try:response = requests.get(url, headers=headers)print(response.status_code)# 将一段文档传入BeautifulSoup的构造方法,就能得到一个文档的对象, 可以传入一段字符串soup = BeautifulSoup(response.text, 'lxml')# 返回的是class为table-view log-set-param的<table>所有标签tables = soup.find_all('table', {'class': 'table-view log-set-param'})crawl_table_title = "参赛学员"for table in tables:# 对当前节点前面的标签和字符串进行查找table_titles = table.find_previous('div').find_all('h3')for title in table_titles:if (crawl_table_title in title):return tableexcept Exception as e:print(e)def parse_wiki_data(table_html):'''从百度百科返回的html中解析得到选手信息,以当前日期作为文件名,存JSON文件,保存到work目录下'''bs = BeautifulSoup(str(table_html), 'lxml')all_trs = bs.find_all('tr')error_list = ['\'', '\"']stars = []for tr in all_trs[1:]:all_tds = tr.find_all('td')star = {}# 姓名star["name"] = all_tds[0].text# 个人百度百科链接star["link"] = 'https://baike.baidu.com' + all_tds[0].find('a').get('href')# 籍贯star["zone"] = all_tds[1].text# 星座star["constellation"] = all_tds[2].text# 身高star["height"] = all_tds[3].text# 体重star["weight"] = all_tds[4].text# 花语,去除掉花语中的单引号或双引号flower_word = all_tds[5].textfor c in flower_word:if c in error_list:flower_word = flower_word.replace(c, '')# 公司if not all_tds[6].find('a') is None:star["company"] = all_tds[6].find('a').textelse:star["company"] = all_tds[6].textstar["flower_word"] = flower_wordstars.append(star)json_data = json.loads(str(stars).replace("\'", "\""))with open('data/' + today + '.json', 'w', encoding='UTF-8') as f:json.dump(json_data, f, ensure_ascii=False)def crawl_pic_urls():'''爬取每个选手的百度百科图片,并保存'''with open('data/' + today + '.json', 'r', encoding='UTF-8') as file:json_array = json.loads(file.read())statistics_datas = []headers = {# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36''User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32'}for star in json_array:name = star['name']link = star['link']# 向选手个人百度百科发送一个http get请求response = requests.get(link, headers=headers)# 将一段文档传入BeautifulSoup的构造方法,就能得到一个文档的对象bs = BeautifulSoup(response.text, 'lxml')# 从个人百度百科页面中解析得到一个链接,该链接指向选手图片列表页面pic_list_url = bs.select('.summary-pic a')[0].get('href')pic_list_url = 'https://baike.baidu.com' + pic_list_url# 向选手图片列表页面发送http get请求pic_list_response = requests.get(pic_list_url, headers=headers)# 对选手图片列表页面进行解析,获取所有图片链接bs = BeautifulSoup(pic_list_response.text, 'lxml')pic_list_html = bs.select('.pic-list img ')pic_urls = []for pic_html in pic_list_html:pic_url = pic_html.get('src')pic_urls.append(pic_url)# 根据图片链接列表pic_urls, 下载所有图片,保存在以name命名的文件夹中down_pic(name, pic_urls)def down_pic(name,pic_urls):'''根据图片链接列表pic_urls, 下载所有图片,保存在以name命名的文件夹中,'''path = 'work/'+'pics/'+name+'/'if not os.path.exists(path):os.makedirs(path)for i, pic_url in enumerate(pic_urls):try:pic = requests.get(pic_url, timeout=15)string = str(i + 1) + '.jpg'with open(path+string, 'wb') as f:f.write(pic.content)print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url)))except Exception as e:print('下载第%s张图片时失败: %s' % (str(i + 1), str(pic_url)))print(e)continuedef show_pic_path(path):'''遍历所爬取的每张图片,并打印所有图片的绝对路径'''pic_num = 0for (dirpath, dirnames, filenames) in os.walk(path):for filename in filenames:pic_num += 1print("第%d张照片:%s" % (pic_num, os.path.join(dirpath, filename)))print("共爬取《青春有你2》选手的%d照片" % pic_num)if __name__ == '__main__':#爬取百度百科中《青春有你2》中参赛选手信息,返回htmlhtml = crawl_wiki_data()#解析html,得到选手信息,保存为json文件parse_wiki_data(html)#从每个选手的百度百科页面上爬取图片,并保存crawl_pic_urls()#打印所爬取的选手图片路径#('/home/aistudio/work/pics/')print("所有信息爬取完成!")

http://www.ppmy.cn/news/1519500.html

相关文章

展会直击 | 美格智能亮相IOTE 2024第二十二届国际物联网展·深圳站

IOTE 2024第二十二届国际物联网展深圳站于2024年8月28日—30日在深圳国际会展中心&#xff08;宝安&#xff09;开展&#xff0c;美格智能携最新的5G/4G AIoT模组与物联网行业解决方案精彩亮相&#xff0c;持续为客户带来通信技术、AI智能方面的创新产品和创新技术解决方案&…

pyautogui对键盘的几种操作,附代码示例

以下是关于 PyAutoGUI 对键盘的几种操作及相应的代码示例&#xff1a; PyAutoGUI 对键盘的操作主要包括文本输入、按键长按与释放、热键组合等。 文本输入可以使用 typewrite() 函数&#xff0c;例如&#xff1a;pyautogui.typewrite(Hello world!, interval0.5) &#xff0c…

滴滴前端日常实习一面

同步到csdn上 一面 水平居中、垂直居中的方法。align-item实现的是水平居中还是垂直居中。flex-direction为column的时候&#xff0c;是什么居中。js有什么数据类型。简单数据类型和复杂数据类型的区别深拷贝和浅拷贝的区别JSON.stringify有什么弊端怎么判断数组类型Vue3和Vu…

spring框架AOP、spring事管理

概念 Aspect Oriented Programming&#xff0c;面向切面编程是对面向对象编程的补充延续。 面向切面编程思想是将程序中非业务&#xff08;提交事务、打印日志、权限验证、统一异常处理&#xff09;然后在调用业务代码是&#xff0c;通过代理对象帮助我们调用这些提取出来的非业…

SecurityHeaders:为.Net网站添加安全标头,让Web更加安全、避免攻击!

网站的安全对于任何一家公司都是非常重要的。 为了保证Web安全&#xff0c;其中Http安全标头就是非常重要一个的措施。设定正确的安全头可以增强网站的安全性&#xff0c;因为它们可以帮助防止各种网络攻击&#xff0c;如跨站脚本&#xff08;XSS&#xff09;、点击劫持&#…

算法-汇总区间(228)

这题可以用区间来做&#xff0c;区间是什么&#xff0c;在编程问题中&#xff0c;区间常用于表示连续的数字集合&#xff0c;比如这道题【0&#xff0c;2】就表示0&#xff0c;1&#xff0c;2这样的数字集合。 所以这道题首先定义一个字符数组用来存输出结果&#xff0c;然后定…

Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之线性模型

1. 线性模型 线性模型是机器学习中最基础和常见的模型之一。在线性模型中&#xff0c;预测变量&#xff08;输入特征&#xff09;和目标变量&#xff08;输出&#xff09;之间的关系被建模为一个线性组合。数学形式可以表示为&#xff1a; 其中&#xff1a;x 是输入特征向量&a…

Linux平台中标麒麟安装单机DM8数据库

1 说明 数据库是现代信息化系统的基石&#xff0c;而国产数据库的发展则关乎国家的信息安全和国民经济的命脉。达梦数据库作为中国数据库领域的领军企业&#xff0c;其DM8数据库管理系统凭借其高性能、高可靠性、易用性等特点&#xff0c;逐渐赢得了用户的青睐。 本文详细介绍…