Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之线性模型

news/2025/1/16 4:46:38/

1. 线性模型

线性模型是机器学习中最基础和常见的模型之一。在线性模型中,预测变量(输入特征)和目标变量(输出)之间的关系被建模为一个线性组合。数学形式可以表示为:

其中:x 是输入特征向量,w 是权重向量,b 是偏置项,y 是模型的输出。

  • 线性回归:线性回归是一种典型的线性模型,用于预测连续的数值型输出。它直接使用线性关系来进行预测,目标是找到一组权重 w 和偏置 b,使得模型的输出尽可能接近真实值。通常使用均方误差(MSE)作为损失函数,最小化预测值与真实值之间的差异。

  • 逻辑回归:逻辑回归是一种用于二分类问题的监督学习方法。虽然名字中有“回归”二字,但逻辑回归实际上用于分类任务,而不是预测连续值。尽管用于分类任务,但它仍然属于线性模型,因为它的核心也是基于输入特征的线性组合。逻辑回归模型的核心计算部分仍然是一个线性函数:

然而,逻辑回归需要将这个线性组合 z 通过一个 Sigmoid 激活函数 σ(z) 转化为一个概率值(被限制在0到1之间,表示样本属于某一类的概率),以便进行分类,(使用对数损失(log loss):

2. Sigmoid函数

当输入值非常大或非常小时,Sigmoid函数会将其压缩到接近 111 或 000 的值,这使得它能够表示一种“激活”或“非激活”的状态。表达式:

当输入值非常大或非常小时,Sigmoid函数会将其压缩到接近 111 或 000 的值,这使得它能够表示一种“激活”或“非激活”的状态。

当x和y的关系非常复杂时使用sigmoid函数来逼近hard sigmoid函数,Hard Sigmoid函数是一种分段线性近似的Sigmoid函数。

1 epoch = see all the batches once

3. 模型变形ReLU

ReLU函数在输入为负时输出为零,而在输入为正时输出为输入本身。非线性,计算简单,缓解梯度消失问题。2个ReLU可以变成一个hard sigmoid,表达式:

ReLU函数的输出要么是 b+wx_1的值,要么是0.

ReLU 或者Sigmoid函数称为 激活函数(activation function)

引入Sigmoid和ReLU等激活函数后,线性模型本身仍然是线性的,但通过在神经网络中使用这些激活函数,模型可以实现非线性映射,从而具备表示非线性关系的能力。

激活函数(如Sigmoid和ReLU)的引入打破了线性模型的局限性。激活函数在神经网络中的作用主要体现在以下几个方面:

  • 非线性映射:激活函数将线性模型的输出经过非线性变换,使得每一层的输出不再是输入的线性组合,而是经过非线性变换后的输出。这种非线性映射允许模型捕捉更复杂的关系。
  • 神经网络的多层结构:通过多层神经网络,每一层的线性组合再加上非线性激活函数,可以将输入数据映射到更高维的空间,从而逐层捕捉数据中的复杂模式。理论上,足够深的网络可以拟合任何复杂的函数关系。(深度学习)

4. 怎么理解sigmoid或者ReLU作为神经元(neuron)?

生物神经元的功能

在生物学中,神经元(或神经细胞)是大脑和神经系统的基本单元。每个神经元通过接收来自其他神经元的输入信号(通常是化学或电信号),在达到一定阈值后,产生并传递一个新的信号给下游的神经元。这一过程可以简化为三个步骤:

  • 接收输入信号:神经元从其他神经元接收信号。
  • 整合信息:神经元将这些输入信号整合,并判断是否超过某个激活阈值。
  • 输出信号:如果整合后的信号超过阈值,神经元将产生并传递一个新的信号。

人工神经元模型

人工神经元是神经网络的基本构建块,它模拟了生物神经元的上述行为。一个典型的人工神经元模型包括以下几个部分:

  • 输入:人工神经元接收多个输入,每个输入有对应的权重。
  • 加权求和:所有输入乘以各自的权重,并累加到一起,加上一个偏置(bias)。
  • 激活函数:将加权求和的结果传递给一个激活函数,决定该神经元是否“激活”,即输出什么样的值。

激活函数的作用

激活函数在人工神经元中的作用类似于生物神经元的“激活”机制。具体来说,激活函数的主要功能是:

  • 非线性映射:激活函数将输入的线性组合(加权求和)转化为非线性输出。这使得神经网络能够拟合和表达复杂的非线性关系,这在多层神经网络中尤其重要。
  • 决定输出信号:激活函数决定了人工神经元的输出值,类似于生物神经元的激活和抑制过程。例如,当使用Sigmoid函数时,输出值被限制在0到1之间,类似于神经元是否“发火”的概念;当使用ReLU函数时,负输入直接被抑制为零,只有正输入才会传递到下一层。

Sigmoid和ReLU作为神经元的具体表现

  • Sigmoid神经元:Sigmoid激活函数将输入压缩到0到1之间,可以被看作是神经元的激活概率。它类似于生物神经元的“全或无”法则——如果输入超过某个阈值,神经元激活并输出一个信号(接近1);否则,输出接近0。
  • ReLU神经元:ReLU函数在输入为正时直接输出该值,为负时输出0。这类似于生物神经元只对强烈的刺激做出反应,弱刺激(或负值)被忽略。在深度神经网络中,ReLU神经元因其简单且计算效率高而广泛使用。

5. 机器学习框架

  • 写出一个含有未知数 $\theta $的函数,$\theta $代表函数中所有的未知参数。
  • 定义损失,损失也是一个函数,输入就是一组参数,来判断这组参数是否能让模型变得更好
  • 解一个优化问题,找到一个$\theta $,能够让损失越小越好。


http://www.ppmy.cn/news/1519493.html

相关文章

Linux平台中标麒麟安装单机DM8数据库

1 说明 数据库是现代信息化系统的基石,而国产数据库的发展则关乎国家的信息安全和国民经济的命脉。达梦数据库作为中国数据库领域的领军企业,其DM8数据库管理系统凭借其高性能、高可靠性、易用性等特点,逐渐赢得了用户的青睐。 本文详细介绍…

【开源免费】基于SpringBoot+Vue.JS渔具租赁系统(JAVA毕业设计)

本文项目编号 T 005 ,文末自助获取源码 \color{red}{T005,文末自助获取源码} T005,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 渔…

牛牛替换(c语言)

1.//描述 //牛牛有一个长度为 n 的字符数组,他尝试把字符数组中其中一些字符替换成另一些字符。 //输入描述: //第一行输入一个正整数 n 表示字符数组的长度,四个个字符分别 a1 和 a2 , a3 和 a4, // 表示把字符数组中…

数据结构代码集训day8(适合考研、自学、期末和专升本)

习题来自B站up:白话拆解数据结构! 题目如下: (1)在递增有序的单链表L中,删除值重复的结点 (2)使带头节点单链表的值递增有序 题1 和之前顺序表那题差不多,因为是有序的&#xff0c…

生成图片的base64编码(纯C语言实现)

一、前言 Base64编码是一种广泛使用的编码方案,将任意二进制数据转换为可打印的ASCII字符字符串。这种编码方式之所以重要,是因为许多通信协议和存储介质对数据的可传输性和可存储性有特定的要求,它们可能无法直接处理或有效传输二进制数据。…

vue路由Router设置父路由默认选中第一个子路由,切换子路由让父路由激活高亮效果不会消失

import Vue from vue; import VueRouter from vue-router;// 导入组件 import Home from ../views/Home.vue; import Parent from ../views/Parent.vue; import Child1 from ../views/Child1.vue; import Child2 from ../views/Child2.vue;Vue.use(VueRouter);// 定义路由 cons…

Mac怎么安装谷歌浏览器

谷歌浏览器凭借其强大的功能,成为广大用户的首选浏览器。其中Mac用户在进行下载和安装时,可能会出现一些困难。为了帮助大家顺利的在Mac系统中成功安装,下面就给大家详细分享Mac安装谷歌浏览器指南,希望对你有所帮助。 Mac安装谷歌…

备考AMC10美国数学竞赛2024:吃透1250道真题和知识点(持续)

有什么含金量比较高的初中生数学竞赛吗?美国数学竞赛AMC10是个不错的选择。那么,如何备考AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。 今天是2024年9月2日,距离2024年AMC10…