Llama3-Tutorial之XTuner微调Llama3个人小助手

news/2024/11/17 2:25:29/

Llama3-Tutorial之XTuner微调Llama3个人小助手

使用XTuner微调llama3模型。

参考: https://github.com/SmartFlowAI/Llama3-Tutorial

1. web demo部署

参考上一节内容已经完成web demo部署,进行对话测试, 当前回答基于llama3官方发布的模型进行推理生成:

web-demo
web-demo

下面进行微调。

2. 自我认知训练数据集准备

(llama3) root@intern-studio-50014188:~# cd ~/Llama3-Tutorial/
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial# python tools/gdata.py
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/data# pwd
/root/Llama3-Tutorial/data
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/data# ll -alh
total 714K
drwxr-xr-x 2 root root 4.0K May  4 10:31 ./
drwxr-xr-x 7 root root 4.0K May  2 11:04 ../
-rw-r--r-- 1 root root    1 May  2 11:04 .gitkeep
-rw-r--r-- 1 root root 681K May  4 10:23 personal_assistant.json
-rw-r--r-- 1 root root  19K May  2 11:04 self_cognition.json

以上脚本在生成了personal_assistant.json 数据文件,格式如下所示:

[
    {
        "conversation": [
            {
                "system""你是一个懂中文的小助手",
                "input""你是(请用中文回答)",
                "output""您好,我是SmartFlowAI,一个由 SmartFlowAI 打造的人工智能助手,请问有什么可以帮助您的吗?"
            }
        ]
    },
    {
        "conversation": [
            {
                "system""你是一个懂中文的小助手",
                "input""你是(请用中文回答)",
                "output""您好,我是SmartFlowAI,一个由 SmartFlowAI 打造的人工智能助手,请问有什么可以帮助您的吗?"
            }
        ]
    }
]

3. XTuner配置文件准备

主要修改了model路径和数据文件:

(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/configs/assistant# ls
llama3_8b_instruct_qlora_assistant.py
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/configs/assistant# vim llama3_8b_instruct_qlora_assistant.py 
...
#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/model/Meta-Llama-3-8B-Instruct'
use_varlen_attn = False

# Data
#data_files = ['/root/Llama3-XTuner-CN/data/personal_assistant.json']
data_files = ['/root/Llama3-Tutorial/data/personal_assistant.json']
...

4. 训练模型

cd ~/Llama3-Tutorial

# 开始训练,使用 deepspeed 加速,A100 40G显存配置,训练耗时24分钟。本文使用24G显存(30%的A100资源),耗时较长。
xtuner train configs/assistant/llama3_8b_instruct_qlora_assistant.py --work-dir /root/llama3_pth

# Adapter PTH 转 HF 格式
xtuner convert pth_to_hf /root/llama3_pth/llama3_8b_instruct_qlora_assistant.py \
  /root/llama3_pth/iter_500.pth \
  /root/llama3_hf_adapter

# 模型合并
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert merge /root/model/Meta-Llama-3-8B-Instruct \
  /root/llama3_hf_adapter\
  /root/llama3_hf_merged

# 最终合并的模型文件如下:
ls llama3_hf_merged/ -alh
total 15G
drwxr-xr-x  2 root root  4.0K May  4 12:07 .
drwxr-xr-x 23 root root  8.0K May  6 13:16 ..
-rw-r--r--  1 root root   707 May  4 12:07 config.json
-rw-r--r--  1 root root   121 May  4 12:07 generation_config.json
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00001-of-00009.bin
-rw-r--r--  1 root root  1.8G May  4 12:07 pytorch_model-00002-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00003-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00004-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00005-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00006-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00007-of-00009.bin
-rw-r--r--  1 root root  1.3G May  4 12:07 pytorch_model-00008-of-00009.bin
-rw-r--r--  1 root root 1003M May  4 12:07 pytorch_model-00009-of-00009.bin
-rw-r--r--  1 root root   24K May  4 12:07 pytorch_model.bin.index.json
-rw-r--r--  1 root root   301 May  4 12:07 special_tokens_map.json
-rw-r--r--  1 root root  8.7M May  4 12:07 tokenizer.json
-rw-r--r--  1 root root   50K May  4 12:07 tokenizer_config.json

5. 推理验证

streamlit run ~/Llama3-Tutorial/tools/internstudio_web_demo.py \
  /root/llama3_hf_merged

此时Llama3拥有了他是SmartFlowAI打造的人工智能助手的认知:

fine-tuning
fine-tuning

但是训练后的模型丢失了之前模型的认知。

本文由 mdnice 多平台发布


http://www.ppmy.cn/news/1456048.html

相关文章

[Linux深度学习笔记4.28]

隐藏权限 : 防止root用户误操作删除, 查看隐藏权限 : lsattr设置隐藏权限 : chattrchattr a : 可以追加内容,不能编辑不能删除chattr i : 不能编辑不能删除文件chattr A :文件访问时间固定下来stat : 查看文件的详细信息 进程管理 : 进程 : 一个正在运行的程序,主进程,子进程线…

MES系统:优化生产执行,实现高效、灵活的制造管理

MES系统作为操作执行层可以缩短排产周期,解决紧急插单问题;通过计划、采集、管控等功能来改进生产执行;与实际生产即时接轨车间时间驱动上层的商务活动。 MES系统包含基础数据、物料和工艺管理、生产过程管理、APS排产、人员管理、设备与工具…

ue引擎游戏开发笔记(33)——武器与角色的匹配,将新武器装备到角色身上

1.需求分析: 武器能出现在世界中,完成了第一步,下一步需要角色和武器适配,即不论角色跑动,射击等,武器和角色都相匹配,将武器装备到角色身上。 2.操作实现: 1.首先先把角色原有的武…

论文笔记ColdDTA:利用数据增强和基于注意力的特征融合进行药物靶标结合亲和力预测

ColdDTA发表在Computers in Biology and Medicine 的一篇一区文章 突出 • 数据增强和基于注意力的特征融合用于药物靶点结合亲和力预测。 • 与其他方法相比,它在 Davis、KIBA 和 BindingDB 数据集上显示出竞争性能。 • 可视化模型权重可以获得可解释的见解。 …

Go Web 开发 Demo【用户登录、注册、验证】

前言 这篇文章主要是学习怎么用 Go 语言(Gin)开发Web程序,前端太弱了,得好好补补课,完了再来更新。 1、环境准备 新建项目,生成 go.mod 文件: 出现报错:go: modules disabled by G…

17.Blender RC大佬EEVEE皮肤节点预设导入

如何添加节点预设 在底下的左下角打开Geometry Node Editor 选中正方体,点击新建 当鼠标指针在两个模块之间,是十字的样子时 可以拖出一个新的板块 然后打开文件浏览器 找到节点预设然后拖入到底下的节点编辑界面就可以了或者是blend文件&#xf…

解释Java的内存模型,特别是堆(Heap)和栈(Stack)

Java的内存模型定义了如何在Java虚拟机(JVM)中处理数据的存储和动态分配。这个内存模型主要由两个部分组成:栈(Stack)和堆(Heap),此外还有方法区(Method Area&#xff09…

STM32 FreeRTOS 常用API

任务间同步 1,信号量 信号量分为二进制信号量 和计数型信号量 信号:起通知作用 量:还可以用来表示资源的数量 当"量"没有限制时,它就是"计数型信号量"(Counting Semaphores) 当"量"只有0、1两…