开源代码分享(22)-基于拉格朗日松弛的电动汽车分布式充放电调度

news/2024/11/7 22:36:18/

1.分布式充放电控制方法

        与集中式控制中调度机构直接下达充电指令不同 分布式控制中 ,调度机构根据系统运行状况发出调度信号 用户接收调度信号优化充放电过程 、确定充放电曲线 并上报调度中心 。 当电动汽车数量较多时 ,充放电策略会对电力系统运行状态产生显著 影响 因而需要进行多步迭代产生恰当的调度信号。
        图 1 给出了分布式充放电控制的一般流程 。 需要指出的是 当系统规模较大 电动汽车数目较多时 ,可设置电动汽车聚集体层 构成树状的调度系统 ,减轻调度中心的通信和数据汇总压力。电价 发电 辅助服务的边际成本 )信号能反映电能供需状况 ,用户通常也以用电费用最省为充放电控制目标 ,因而电价信号是一种理想的分布式充放电控制信号 。 当电价信号与采用集中式最优充电控 制的电价接近时 表明 2 种控制下电力系统运行方 式接近 分布式控制的效果与集中式控制效果接近 直接采用上一次迭代产生的电价作为本次迭代 中的调度信号会导致用户充放电曲线振荡 迭代过 程不收敛 此现象在文献 16 的研究中已得到证实 不再赘述 从流程上看 促进迭代过程收敛可采用 以下 2 种方法 在迭代过程中采用恰当的电价信号 修正方法 调整用户的优化目标 文献 16 ]、[ 17 后一种思路出发 分别在用户优化目标中加入表示 本次迭代充放电功率偏离上一次迭代所有用户平均 或自身充放电功率的项 保证问题收敛 本文从前一 种思路出发 基于 拉格朗日松弛(LR) 采用次梯度法对电价信号进 行修正

2、基于拉格朗日松弛分布式充放电控制方法

        拉格朗日松弛是一种大规模优化问题的分解算法,其基本思想是利用对偶因子将耦合约束松弛 ,将原问题转化为一个分层迭代求解的鞍点问题 。 下层求解一系列规模较小的子问题 ;上层通过对偶因子的更新实现子问题间的协调 LR 在电力系统优化特别是 UC中得到广泛应用 18 - 20 本文方法正是以 LR 求解 UC为蓝本的 LR 可将原问题分解为单一机组优化运行和单一车辆充放电优化问题 同时 ,对偶因子对应于发电 备用边际价格 成本 的概念 ,非常适用于分布式充放电控制

2.1 问题分解

        与UC 类似 ,该对偶问题具有良好的变量分离特性 可以拆解为单机优化问题和单一车辆优化问题。下层的单机优化问题与 UC 中类似 ,而单一车辆优化问题具有如下形式
        式( 17 )、( 18 )分别描述了充电和充放电控制问题 λ t 由上层计算给定 此时它们为线性规划问题,可采用单纯形法 动态规划法等方法求解

2.2 可行解构造

        非凸问题的对偶最优解一般对应于原问题的非可行解 利用 LR 求解 UC 问题时 ,会将对偶解的整数部分 即发电机启停状态 代入原问题 。 原问题退化为发电经济调度问题 ,求解该问题得到发电机出力水平 当该组整数值不是原问题可行解时 ,需采用启发式方法构造原问题可行解。
        电动汽车数量庞大,无法在原问题中对电动汽车充放电功率优化 ,因此将子问题中求得的充放电功率汇总后直接代入原问题 ,并采用罚函数处理功率平衡和备用约束不满足的情形 选取罚因子时 ,应保证罚因子大于发电或备用的边际成本 。 罚函数的引入可以避免迭代过程中每一步修正整数变量取值 、构造原问题可行解的繁琐 ,只需在对偶间隙达到收敛门限 求解过程收敛后 ,采用已有方法进行一步可行解构造

2.3 基于 LR 分布式充放电控制流程

        参照 LR 求解 UC 问题的过程 提出了基于 LR的分布式充放电控制流程 如下所示
a. 选取一组初始的对偶因子 (即发电和备用的边际价格 作为调度信号
b. 在给定的信号下 ,求解单机优化问题和单一车辆优化问题 并将结果上报调度中心
c. 调度中心根据上报信息 ,计算对偶问题目标函数值 L 和原问题目标函数值 J
d. 调度中心计算相对对偶间隙 dual = J - L L,根据对偶间隙取值判断问题是否收敛 ,若收敛转向步骤 e 若不收敛则更新对偶因子 转向步骤 b
e. 各车辆的充放电功率即为最优功率 ,并可以根据对偶问题解构造可行的发电调度计划
        本文选用次梯度法进行对偶因子更新。 LR 对偶因子在更新过程中反映了机组启停的影响和发电成本变化情况 采用 LR 对偶因子作为调度信号更有利于发电成本的优化

2.4 计算耗时分析

        文中方法耗时主要发生在子问题求解、发电经济调度问题求解和信息交换环节 分布式结构下 ,单一车辆子问题和单机子问题并行求解 而前者 (线性规划 复杂度远低于后者 混合整数规划 ),决定子问题求解环节耗时的单机子问题。因而 文中方法仅比 LR 求解 UC 多出了信息交换时耗 从计算效率和耗时角度而言 随着低延时通信设施的建设和智能电网的完善,文中方法将能够用于实际

3.运行结果分析

4.代码获取

开源代码分享(22)-基于拉格朗日松弛电动汽车分布式充放电调度matlab代码资源-CSDN文库


http://www.ppmy.cn/news/1439828.html

相关文章

Java基础入门day40

day40 DQL 分组补充 create table student(sid int,name varchar(20),sex char(6),score double,cid int ); ​ insert into student values(100, wukong, male, 99, 1); insert into student values(101, wuneng, male, 59, 1); insert into student values(102, wujing, ma…

Python编程----递归求解兔子的数量

描述 兔子的数量以这样的方式增长:每个月的兔子数量等于它前一个月的兔子数量加它前两个月的兔子数量,即f(n)f(n-1)f(n-2)。假设第1个月的兔子有2只,第2个月的兔子有3只,你能使用递归的方法求得第n个月的兔子有多少只吗&#xff…

SN75107BDR 总线接收器 中文资料_PDF中文资料_参数_引脚图

SN75107BDR 规格信息: 制造商:Texas Instruments 产品种类:总线接收器 RoHS:是 接收机数量:2 Receiver 接收机信号类型:Differential 电源电压-最小:/- 4.75 V 电源电压-最大:/- 5.25 V 工作电源电流:30 mA 最小工作温度:0 C 最大工作温度: 70 C 封装 / 箱…

【深度学习】烟雾和火焰数据集,野外数据集,超大量数据集,目标检测,YOLOv5

标注了2w张数据集,是目标检测yolo格式的,有火焰、烟雾两个目标,下图是训练时候的样子: 训练方法看这里: https://qq742971636.blog.csdn.net/article/details/138097481 数据集介绍 都是博主辛苦整理和标注的&…

Esp8266 - USB开关分享(开源)

文章目录 简介推广自己gitee项目地址:嘉立创项目地址:联系我们 功能演示视频原理图嘉立创PCB开源地址原理图PCB预览 固件烧录代码编译烧录1. 软件和驱动安装2. 代码编译1. 安装所需要的依赖库文件2. 下载源代码3. 烧录代码 使用说明1. 设备配网2. 打开设备操作页面3…

深入OceanBase内部机制:分区机制构建高可用、高性能的分布式数据库基石

码到三十五 : 个人主页 在数据库技术的发展历程中,随着数据量的不断增长和业务需求的日益复杂,如何高效地存储、查询和处理数据成为了关键挑战。OceanBase作为一款高性能、高可用的分布式关系数据库,通过其独特的分区机制&#xf…

03 后端入参校验:自定义注解实现

03 后端入参校验:自定义注解实现 一、前言二、实现1、新建Spring Boot项目2、引入依赖3、新建注解类4、新建校验器5、全局异常处理器6、编写Controller7、新建实体类8、启动并测试 一、前言 在 Java 后端开发中,为了实现入参校验,常常会使用…

Python中的多点坐标

Python中的多点坐标 在Python中,多点坐标通常表示为一组元组或列表的列表,其中每个内部列表或元组表示一个点的坐标。这些坐标可以是二维的(x, y),三维的(x, y, z),或者更高维度的&a…