群论入门笔记

embedded/2024/11/28 17:02:48/

群的基本定义

群由一组元素 G 和一个运算(常用符号包括 +,x , 或 ∗)组成。

封闭性

对于任意两个元素 x,y∈G,运算 x * y 的结果仍然属于集合 G,即:

∀x,y∈G,x∗y∈G.

结合律

对于任意 a,b,c∈G,群的运算满足结合律:

(a * b) * c = a * (b * c).

单位元

群中存在一个单位元 e∈G,使得对于任意 y∈G:

y * e = e * y = y.

逆元

对于每个 x∈G,存在逆元 x−1∈G,使得:

x∗x−1=e.

群的注意事项

非交换性

一个群 G 不一定是交换的,即运算可能不满足:

x * y = y * x.

例如,在三角形的变换中,旋转 rr 和翻转 ff 的次序可能影响结果:

r \cdot f \neq f \cdot r

特殊情况
  • 如果 G 是交换的(即运算满足交换律),称为交换群或阿贝尔群。
  • 如果 G 不满足交换律,则称为非交换群或非阿贝尔群。

什么是子群?

子群是由一个群的子集构成的更小的群。子群本身需要满足群的定义。如果 H 是 G 的子群,我们记作 H≤G。

子群的判定条件

要判断一个集合 H 是否是 G 的子群,需要满足以下条件:

  1. 非空子集:H≠∅,子群中至少要包含一个 G 的元素,通常包括单位元 e。
  2. 闭合性:如果 a,b∈H,则 a∗b∈H。
  3. 逆元存在性:对于 H 中的每个元素 a,其逆元 a−1 也必须属于 H。
子群测试法

一个简便的判定方法是验证:

  • H≠∅,且
  • 对于所有 a,b∈H,都有 a∗b−1∈H。
子群的例子

平凡子群
每个群 G 至少有两个子群:

{e},G.

真子群
如果 H≠G 且 H≠{e},则称 H 为真子群。

整数加法群的子群
在整数群 G=(Z,+)中,子群

Hn={nk:k∈Z},

其中 n 是任意正整数。例如:

H2={0,±2,±4,… }.

陪集与子群的指数

如果 H≤G,那么 H 在 G 中的陪集定义为:

gH={g∗h:h∈H}

其中 g∈G。

H 的指数(记作 ∣G:H∣)是 H 在 G 中不同陪集的数量。

什么是Cayley表?

Cayley表(或称群表)是群论中的一个基本工具,用于表示有限群的结构。它是一个方形矩阵,用来直观地展示群的运算。在Cayley表中,群的每个元素在行和列中都有表示,表中第 ii 行和第 jj 列的交点显示了元素 gi 和 gj 经群运算后的结果。

如何构建Cayley表

考虑一个有限群 G,它的元素为 {g1,g2,…,gn},群的二元运算为 * 。构建该群的Cayley表的步骤如下:

  1. 标记行和列
    用群的元素 g1,g2,…,gn 标记行和列。

  2. 填充表格
    对于每一对元素 gi 和 gj,计算它们的积 gi ∗ gj(根据群的运算规则),并将结果填入表格中对应的位置。

  3. 对称性
    如果群是交换群(即运算是交换的),则Cayley表相对于对角线是对称的。换句话说,对于任意的 gi,gj ∈G,都有:g_i * g_j = g_j * g_i

    因此表中位置 (i, j) 和 (j, i) 的值相同。

Cayley表的例子

考虑群 Z3={0,1,2},其运算为模3加法(运算到十进制的“3”回到0,也就是求对3求余数)。这个群的Cayley表如下:

行和列标记为 0,1,2。 运算为模3加法,意味着加法结果取模3。

\begin{array}{c|ccc} + & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \\ \end{array}

表格中第1行第2列的值是 1 + 2 = 0(模3),因此该项为0。类似地,第2行第3列的值是 2 + 2 = 1(模3)。

Cayley表的性质

单位元

群的单位元 e 会出现在Cayley表的对角线上。这是因为对于任意的 gi,都有:

g_i * e = g_i \quad e * g_i = g_i.

逆元

每个群元素都有逆元,Cayley表可以用来找到这些逆元。对于元素 gi ,存在元素 gj ,使得:

gi∗gj = e.

交换群

对于交换群(阿贝尔群),Cayley表是对称的。这种对称性反映了对于任意的两个元素 gi 和 gj,都有:

g_i * g_j = g_j * g_i.

非交换群

对于非交换群(非阿贝尔群),Cayley表通常不是对称的。表中 g_i * g_jg_j * g_i的值会不同。

Cayley表的应用

  1. 可视化群的结构
    Cayley表是一种直观的方式来展示群的结构,尤其是在处理小型有限群时非常有用。它提供了一种快速检查群的封闭性、单位元和逆元的方法。

  2. 确定群的性质
    通过检查Cayley表,可以快速判断群是否是交换的,找出元素的阶,以及识别子群。

  3. 群的分类
    Cayley表还可以帮助分类有限群。例如,通过比较不同群的表,可以判断两个群是否同构(即结构上相同)。

总结

群论是数学中一门研究群及其性质的学科,广泛应用于代数、几何、物理学等多个领域。群的基本定义包括封闭性、结合律、单位元和逆元,构成了群的核心特性。群论的研究不仅限于群本身,还包括群的结构、子群、陪集以及群的表示等内容。

通过对群的不同特性的分析,我们可以将群分为交换群和非交换群。交换群满足运算的交换律,而非交换群则不满足交换律。子群是群的一个重要概念,具有独立的群结构,并且可以通过特定的条件来判断一个集合是否为某个群的子群。子群的分析有助于深入理解群的结构和性质。

Cayley表作为群的一个重要工具,能够直观地展示群的运算规则,尤其适用于有限群。通过Cayley表,我们可以清晰地看到群的元素之间的相互关系,以及群是否具有交换性。此外,Cayley表还帮助我们找到单位元和逆元,为群的性质分析提供了便利。

群论不仅在纯数学中占据重要地位,而且在物理学、化学、密码学等领域有着广泛的应用。在物理学中,群论帮助我们理解对称性和守恒定律;在化学中,群论用于研究分子的对称性;在密码学中,群论是加密算法的基础。

总之,群论为我们提供了分析和理解数学结构的强大工具。通过群的理论,我们能够系统地探索代数结构的内在规律,从而为进一步的数学研究和实际应用提供了理论支持。


http://www.ppmy.cn/embedded/141224.html

相关文章

scrapy框架学习

scrapy框架学习 Spider(蜘蛛): 详细说明:Spiders是Scrapy框架中用户自定义的类,它们是爬取过程的起点。每个Spider定义了爬取的逻辑,包括起始URLs、如何跟踪链接以及如何解析页面内容。Spiders通常会生成两种输出:提取的数据(通常以Item对象的形式)和新的请求(Reques…

R安装rgdal报错 解决办法

尝试了网上很多办法,不知道哪一步解决了,记录一下所有步骤: 1. 尝试github安装 options(repos c(CRAN "https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))install.packages("devtools")library(devtools)devtools::in…

设计模式——装饰器模式

装饰器模式是结构型设计模式,在Python中有一个非常著名的装饰器wrapper,它的实现方法就是使用了该设计模式,装饰器可以修饰类也可以修饰函数。 从类的设计上说,他的本质是在不定义子类的情况下动态的给对象添加一些额外的功能。举…

C#笔记(5)

一、winform项目与窗体控件 1、部分类的使用 好处:让自动生成的代码后置,我们编写程序的代码显得更加简洁 特点:在最后编译的时候,仍然编译成一个窗体类。 窗体和控件的基本使用 3、Event事件(委托--》事件&#…

代理模式 (Proxy Pattern)

文章目录 代理模式 (Proxy Pattern)原理分类优点缺点示例代码静态代理1. 定义接口2. 创建真实类3. 创建代理类4. 客户端代码输出结果 动态代理(基于 JDK)1. 定义接口和真实类2. 创建动态代理类3. 客户端代码输出结果 UML 类图静态代理动态代理 使用场景小…

Qt中的套件(如MSVC2019)提示no complier set in kit

起因 是我想在qt创建自定义控件新建项目的时候发现有黄色警告:提示no complier set in kit 但是其实我早发现了但是我选择忽视然后选择了minGW编译器。。。。但是现在我不得不解决呜呜呜呜(小声) 提示原因是因为没有编译器,所以…

【Python爬虫五十个小案例】爬取豆瓣电影Top250

博客主页:小馒头学python 本文专栏: Python爬虫五十个小案例 专栏简介:分享五十个Python爬虫小案例 🪲前言 在这篇博客中,我们将学习如何使用Python爬取豆瓣电影Top250的数据。我们将使用requests库来发送HTTP请求,…

HarmonyOS开发:DevEco Studio的Beta3(5.0.5.200)新增和增强特性

新增特性 DevEco Studio支持开发API 13工程。DevEco Profiler Frame模板新增Lost Frames和Hitch Time泳道,用于识别和优化卡顿和丢帧现象。具体请参考Frame分析。hvigor-config.json5中properties下新增ohos.arkCompile.noEmitJs字段,用于指定ArkTS编译…