【深度学习基础 | 预备知识】数据预处理

embedded/2024/11/17 10:50:24/

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、读取数据集
    • 二、处理缺失值
    • 三、转换为张量格式
    • 小结


  为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始,而不是从那些准备好的张量格式数据开始。在Python中常用的数据分析工具中,我们通常使用pandas软件包。像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。本节我们将简要介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。后面的章节将介绍更多的数据预处理技术。

一、读取数据集

  举一个例子,我们首先创建一个人工数据集,并存储在CSV(逗号分隔值)文件../data/house_tiny.csv中。以其他格式存储的数据也可以通过类似的方式进行处理。下面我们将数据集按行写入CSV文件中。

import osos.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')  # 列名f.write('NA,Pave,127500\n')  # 每行表示一个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')

  要从创建的CSV文件中加载原始数据集,我们导入pandas包并调用read_csv函数。该数据集有四行三列。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。

# 如果没有安装pandas,只需取消对以下行的注释来安装pandas
# !pip install pandas
import pandas as pddata = pd.read_csv(data_file)
print(data)

在这里插入图片描述

二、处理缺失值

  注意,“NaN”项代表缺失值。为了处理缺失的数据,典型的方法包括插值法删除法,其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。在这里,我们将考虑插值法。

  通过位置索引iloc,我们将data分成inputsoutputs,其中前者为data的前两列,而后者为data的最后一列。对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

在这里插入图片描述

  对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

在这里插入图片描述

三、转换为张量格式

  现在inputsoutputs中的所有条目都是数值类型,它们可以转换为张量格式。当数据采用张量格式后,可以通过在【深度学习基础 | 预备知识】数据操作 中引入的那些张量函数来进一步操作。

import torchX, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
X, y

在这里插入图片描述

小结

  • pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。
  • pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。

http://www.ppmy.cn/embedded/138233.html

相关文章

C++ 的发展

目录 C 的发展总结:​编辑 1. C 的早期发展(1979-1985) 2. C 标准化过程(1985-1998) 3. C 标准演化(2003-2011) 4. C11(2011年) 5. C14(2014年&#xf…

ISUP协议视频平台EasyCVR视频设备轨迹回放平台智慧农业视频远程监控管理方案

在当今快速发展的农业领域,智慧农业已成为推动农业现代化、助力乡村全面振兴的新手段和新动能。随着信息技术的持续进步和城市化进程的加快,智慧农业对于监控安全和智能管理的需求日益增长。 视频设备轨迹回放平台EasyCVR作为智慧农业视频远程监控管理方…

计算机的错误计算(一百五十六)

摘要 探讨 MATLAB 中双曲反余切函数 acoth(x) 在 附近数的计算精度问题。 Acoth(x)函数的定义为 例1. 已知 计算 与 直接贴图吧: 另外,16位的正确值分别为 0.1110083774360105e2 与 -0.1110083774360105e2(ISRealsoft 提供。通过计算…

数据分析-Excel基础操作

目录 周报讲解 基础概念 理解数据 筛选excel表 数据透视表 插入数据透视表 新建字段 切片器(筛选) 数据透视图 Excel常用函数 sum(求和) 1-8月GMV 1月和8月GMV sumif(条件求和) sumifs 日G…

为什么hbase在大数据领域渐渐消失

HBase 曾是大数据存储领域的标杆之一,凭借其强大的分布式、列式存储和高扩展性,广泛应用于电商、社交网络、金融等需要海量数据管理的场景。然而,近年来 HBase 的使用确实在减少,这主要是因为数据技术栈的演变和用户需求的变化。以下是一些主要原因: 1. 复杂的运维和管理…

Python小游戏24——小恐龙躲避游戏

首先,你需要安装Pygame库。如果你还没有安装,可以通过以下命令安装: 【bash】 pip install pygame 【python】代码 import pygame import random # 初始化Pygame pygame.init() # 设置屏幕尺寸 screen_width 800 screen_height 600 screen …

MFC图形函数学习08——绘图函数的重载介绍

在《MFC图形函数学习06——画椭圆弧线函数》中介绍了CPoint类、POINT结构体;在《MFC图形函数学习07——画扇形函数》中介绍了CRect类、RECT结构体。在介绍完后,没有介绍它们怎样使用。实际上,这些类和结构体对象或指针也是我们学习过的绘图函…

使用Web Components构建模块化Web应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 使用Web Components构建模块化Web应用 使用Web Components构建模块化Web应用 使用Web Components构建模块化Web应用 引言 Web Co…