PID 控制算法(二):C 语言实现与应用

devtools/2025/1/22 14:25:27/

        在本文中,我们将用 C 语言实现一个简单的 PID 控制器,并通过一个示例来演示如何使用 PID 控制算法来调整系统的状态(如温度、速度等)。同时,我们也会解释每个控制参数如何影响系统的表现。

什么是 PID 控制器?

PID 控制器是一种利用系统当前误差、误差的累积以及误差变化率来调整控制输出的算法。其主要思想是根据误差的不同特性(比例、积分和微分)来优化控制过程,使系统更加稳定并快速响应。

  • 比例项(P):与当前误差成正比,能够快速响应误差。
  • 积分项(I):与误差的累积成正比,用于消除持续的偏差。
  • 微分项(D):与误差变化率成正比,用于预测并减少超调。

PID 控制器的控制公式为:

C 语言实现 PID 控制器

我们将用 C 语言编写一个简单的 PID 控制器,通过调整比例、积分和微分系数来实现对一个目标值的控制。假设我们的目标值是某个温度(比如 22°C),系统的当前温度是 20°C,我们希望通过 PID 控制器使系统的温度尽快稳定到目标值。

C 语言代码实现

#include <stdio.h>// 定义 PID 结构体
typedef struct {float Kp;           // 比例系数float Ki;           // 积分系数float Kd;           // 微分系数float prev_error;   // 上一次的误差,用于微分float integral;     // 积分项,累积误差
} PID;// 初始化 PID 控制器
void PID_Init(PID *pid, float Kp, float Ki, float Kd) {pid->Kp = Kp;pid->Ki = Ki;pid->Kd = Kd;pid->prev_error = 0.0f;pid->integral = 0.0f;
}// 计算 PID 控制输出
float PID_Compute(PID *pid, float setpoint, float current_value) {// 计算当前误差float error = setpoint - current_value;// 积分项:累积误差pid->integral += error;// 微分项:当前误差与上次误差的差float derivative = error - pid->prev_error;// PID 控制公式:输出 = 比例项 + 积分项 + 微分项float output = pid->Kp * error + pid->Ki * pid->integral + pid->Kd * derivative;// 保存当前误差,为下一次微分做准备pid->prev_error = error;return output;
}int main() {// 创建并初始化 PID 控制器PID pid;PID_Init(&pid, 1.0f, 0.1f, 0.01f);  // 设置 P、I、D 系数// 目标值(期望的系统状态)float setpoint = 22.0f;  // 例如我们希望温度是 22°C// 初始系统值float current_value = 20.0f;  // 初始温度为 20°C// 模拟系统响应,调整温度for (int i = 0; i < 10; i++) {// 计算 PID 输出float control_signal = PID_Compute(&pid, setpoint, current_value);// 假设控制信号直接影响系统值current_value += control_signal;  // 模拟系统的响应// 打印每次的结果printf("Iteration %d: Current Value = %.2f, Control Signal = %.2f\n", i + 1, current_value, control_signal);}return 0;
}

代码解析

  1. PID 结构体:我们首先定义了一个 PID 结构体,其中包含了 PID 控制器的三个系数(KpKiKd),以及用于计算微分项的 prev_error 和用于累积误差的 integral

  2. PID_Init 函数:该函数用于初始化 PID 控制器,设置比例、积分和微分系数,并初始化误差和积分项。

  3. PID_Compute 函数:该函数计算并返回 PID 控制器的输出。它首先计算当前误差(目标值减去当前值),然后计算积分项和微分项,最后通过 PID 控制公式返回控制输出。该输出将用于调整系统的状态。

  4. 主函数:在主函数中,我们创建并初始化 PID 控制器,设置目标值(例如目标温度为 22°C),并模拟系统的响应。每次迭代中,我们计算 PID 输出,并根据输出调整系统的状态(假设每次控制信号直接影响系统值)。

运行结果

假设目标温度为 22°C,初始温度为 20°C,程序将通过 PID 控制器不断调整温度,直到接近目标值。输出结果可能类似于以下内容:

Iteration 1: Current Value = 21.10, Control Signal = 1.10
Iteration 2: Current Value = 21.71, Control Signal = 0.61
Iteration 3: Current Value = 22.00, Control Signal = 0.29
Iteration 4: Current Value = 22.00, Control Signal = 0.04
Iteration 5: Current Value = 22.00, Control Signal = 0.01
Iteration 6: Current Value = 22.00, Control Signal = 0.01
Iteration 7: Current Value = 22.00, Control Signal = 0.00
Iteration 8: Current Value = 22.00, Control Signal = 0.00
Iteration 9: Current Value = 22.00, Control Signal = 0.00
Iteration 10: Current Value = 22.00, Control Signal = 0.00

PID 控制器参数的调整

PID 控制器的表现取决于三个系数:Kp(比例系数)、Ki(积分系数)和 Kd(微分系数)。这些参数需要根据实际系统的特性进行调节。例如:

  • 比例系数 Kp:可以增加系统的响应速度,但过大时可能会导致过冲(超调)或不稳定。
  • 积分系数 Ki:可以消除系统中的长期误差,但过大时会引入震荡。
  • 微分系数 Kd:有助于抑制震荡和过冲,但过大时会导致系统的响应过于缓慢。

通过不断调整这些参数,我们可以优化系统的表现,达到更平滑、更快速的控制效果。

总结

本文通过一个简单的 C 语言示例实现了 PID 控制器,并展示了如何使用 PID 控制算法来调整系统的状态。PID 控制器是一种非常有效的控制方法,广泛应用于自动化控制领域。通过合适的参数调节,我们可以让系统在不同的控制任务中实现快速、稳定的响应。


http://www.ppmy.cn/devtools/152622.html

相关文章

【力扣系列题目】不同路径 组合总和 最大连续1个数 打家劫舍{持续更新中...}

文章目录 不同路径不同路径[不同路径 II](https://leetcode.cn/problems/unique-paths-ii/)[不同路径 III](https://leetcode.cn/problems/unique-paths-iii/) 组合总和组合总和 【无重复数字无限制选择次数】[组合总和 II](https://leetcode.cn/problems/combination-sum-ii/)…

本地 AI 模型“不实用”?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

WPF实战案例 | C# WPF实现计算器源码

WPF实战案例 | C# WPF实现计算器源码 一、设计来源计算器应用程序讲解1.1 主界面1.2 计算界面 二、效果和源码2.1 界面设计&#xff08;XAML&#xff09;2.2 代码逻辑&#xff08;C#&#xff09;2.3 实现步骤总结 源码下载更多优质源码分享 作者&#xff1a;xcLeigh 文章地址&a…

OpenCV相机标定与3D重建(62)根据两个投影矩阵和对应的图像点来计算3D空间中点的坐标函数triangulatePoints()的使用

加粗样式- 操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 这个函数通过使用立体相机对3维点的观测&#xff0c;重建这些点的三维坐标&#xff08;以齐次坐标表示&#xff09;。 cv::triangula…

JAVA-Exploit编写(8-10)--http-request库编写exp批量利用

目录 1.【CVE-2018-1002015】thinkphp命令执行漏洞 2.编写为标准类 2.1 标准类文件标准 2.2 测试类文件调用 3.批量检测 3.1 读取文本 3.2 标准类 3.2 测试类 1.【CVE-2018-1002015】thinkphp命令执行漏洞 以此漏洞为例,通过编写两个方法,分别是漏洞的POC和EXP,看过之前…

汇编与逆向(一)-汇编工具简介

RadASM是一款著名的WIN32汇编编辑器&#xff0c;支持MASM、TASM等多种汇编编译器&#xff0c;Windows界面&#xff0c;支持语法高亮&#xff0c;自带一个资源编辑器和一个调试器。 一、汇编IDE工具&#xff1a;RadASM RadASM有内置的语言包 下载地址&#xff1a;RadASM asse…

Erlang语言的并发编程

Erlang语言的并发编程 引言 并发编程是现代软件开发中的一个重要领域&#xff0c;尤其是在面对需要高效处理大量任务的应用时。Erlang是一种专门设计用于并发编程的编程语言&#xff0c;由于其在电信和即时通信系统中的广泛应用&#xff0c;逐渐引起了开发者的关注。Erlang的…

抽奖系统(4——活动模块)

1. 活动创建 需求回顾 创建的活动信息包含&#xff1a; 活动名称活动描述关联的一批奖品&#xff0c;关联时需要选择奖品等级&#xff08;一等奖、二等奖、三等奖&#xff09;&#xff0c;及奖品库存圈选一批人员参与抽奖 tip&#xff1a;什么时候设置奖品数量和奖品等级&am…