VCNet论文阅读笔记

devtools/2024/9/21 7:55:54/

VCNet论文阅读笔记

0、基本信息

信息细节
英文题目VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
翻译VCNet和功能目标正则化用于学习连续处理的因果效应
单位芝加哥大学
年份2021
论文链接[2103.07861] VCNet和功能定向正则化用于学习连续处理的因果效应 (arxiv.org)
代码链接https://github.com/lushleaf/varying-coefficient-net-with-functional-tr
发表会议ICLR 2021 Conference Program Chairs

1、摘要

背景:因果推断(casual inference)在智能营销、药物治疗、决策上有广泛的应用,比如优惠券对用户购买意愿的影响、药品多大程度改善或治愈疾病、某项政策提高多少就业率等。(即,预估一种干预因素(treatment)对结果(outcome)的影响(treatment effect),本文的目标问题就是获得ADRF曲线(平均剂量反应曲线):x轴是药物浓度(treatment),y轴是患者效果(outcome)。

存在问题:

  • 大多数uplift相关的论文都是关于binary treatment的因果效应估计,然而现实生活中,我们却经常遇到连续treatment (continues treatment)的情况。比如电商发放优惠券的满减金额是连续的,医生给病人开药的剂量是连续。那么我们应该如何对continues treatment对情况进行因果效应估计呢?

  • 以前解决连续treatment的方法是将连续treatment分成多个blocks,使用不同的head处理不同的block,但是这样获得的outcome是不连续的(对应下图的Drnet曲线)。

image.png

  • 神经网络处理这个问题大多是,神经网络第一层是 ( t , x ) (t,x) (t,x),最后一层是 y y y,这样做会存在treatment可能会在高维度表征中丢失的问题,以前的处理方法是将 t t t,加到每个隐藏层上,但是这样做让预测更加的不连续。

文章贡献:

  • 提出一个可变系数神经网络VCNet能处理连续干预的网络结构

  • 推广了目标正则化,以获得整个ADRF曲线的双重鲁棒估计。

2、问题陈述和建模

iid 样本 { ( y _ i , x _ i , t _ i ) } _ i = 1 n \{(y\_i,\boldsymbol{x}\_i,t\_i)\}\_{i=1}^n {(y_i,x_i,t_i)}_i=1n,其中X是协变量向量,T是连续treatment[0,1],Y是结果

💎目标就是求平均剂量反应函数:

ψ ( t ) = E ( Y ∣ do ( T = t ) ) \psi(t)=\mathbb{E}(Y\mid\text{do}(T=t)) ψ(t)=E(Ydo(T=t))

这里的 do 操作符表示“干预”或“人为设置”处理变量 𝑇 为 𝑡。这意味着我们要考虑的是,如果我们强制将处理设置为 𝑡,在这种情况下 𝑌的期望值。

患者年龄 X治疗水平 T结果 Y
1300.52
2300.53
3500.54
4800.51

ψ ( 0.5 ) = E ( Y ∣ do ( T = 0.5 ) ) \psi(0.5)=\mathbb{E}(Y\mid\text{do}(T=0.5)) ψ(0.5)=E(Ydo(T=0.5))

但在实际应用中,我们通常不能直接进行干预实验,我们只能观察到变量间的关系。在观察性数据中,我们常常用条件期望来替代这个干预性期望。我们需要将这个理论性的期望转换为可实际计算的形式。

ψ ( t ) = E ( Y ∣ do ( T = t ) ) = E ( E ( Y ∣ X , T = t ) ) \psi(t)=\mathbb{E}(Y\mid\text{do}(T=t))=\mathbb{E}(\mathbb{E}(Y|X,T=t)) ψ(t)=E(Ydo(T=t))=E(E(YX,T=t))

ψ ( 0.5 ) = E ( Y ∣ do ( T = 0.5 ) ) = E ( E ( Y ∣ X , T = 0.5 ) ) \psi(0.5)=\mathbb{E}(Y\mid\text{do}(T=0.5))=\mathbb{E}(\mathbb{E}(Y|X,T=0.5)) ψ(0.5)=E(Ydo(T=0.5))=E(E(YX,T=0.5))

E ( Y ∣ 30 , T = 0.5 ) = ( 2 + 3 ) / 2 = 2.5 \mathbb{E}(Y|30,T=0.5) = (2+3)/2 = 2.5 E(Y∣30,T=0.5)=(2+3)/2=2.5

E ( Y ∣ 50 , T = 0.5 ) = 4 \mathbb{E}(Y|50,T=0.5) =4 E(Y∣50,T=0.5)=4

E ( Y ∣ 80 , T = 0.5 ) = 1 \mathbb{E}(Y|80,T=0.5) =1 E(Y∣80,T=0.5)=1

ψ ( 0.5 ) = E ( E ( Y ∣ X , T = 0.5 ) ) = E ( E ( Y ∣ 30 , T = 0.5 ) + E ( Y ∣ 50 , T = 0.5 ) + E ( Y ∣ 80 , T = 0.5 ) ) \psi(0.5)=\mathbb{E}(\mathbb{E}(Y|X,T=0.5)) = \mathbb{E}(\mathbb{E}(Y|30,T=0.5)+\mathbb{E}(Y|50,T=0.5)+\mathbb{E}(Y|80,T=0.5)) ψ(0.5)=E(E(YX,T=0.5))=E(E(Y∣30,T=0.5)+E(Y∣50,T=0.5)+E(Y∣80,T=0.5))

ψ ( 0.5 ) = \psi(0.5) = ψ(0.5)= ( 2.5 + 4 + 1 ) / 3 = 2.42 (2.5+4+1)/3 = 2.42 (2.5+4+1)/3=2.42

但是这里面存在一个问题:年长的患者可能更容易在同一治疗水平下有不同的结果(X存在混杂因素)。

解决方案:

提出一个广义倾向性得分的概念

E ( E ( Y ∣ X , T = t ) ) \mathbb{E}(\mathbb{E}(Y|X,T=t)) E(E(YX,T=t))需要结合所有与 𝑋 相关的信息来进行计算。然而,当你面对的是复杂的数据,有时通过所有的 𝑋 来进行估计会引入噪声或混杂因素。

使用 π ( t ∣ x ) \pi(t|x) π(tx)代表患者接受treatment的概率( P ( t ∣ x ) P(t|x) P(tx)

倾向评分提供了一种将多维数据(特征 𝑋)映射到一维(治疗概率)的方法。这一映射使得我们能够更有效地建模和学习潜在的因果关系。

ψ ( t ) = E ( Y ∣ do ( T = t ) ) = E ( E ( Y ∣ X , T = t ) ) = E ( E ( Y ∣ π ( t ∣ x ) , T = t ) ) \psi(t)=\mathbb{E}(Y\mid\text{do}(T=t))=\mathbb{E}(\mathbb{E}(Y|X,T=t)) = \mathbb{E}(\mathbb{E}(Y|\pi(t|x),T=t)) ψ(t)=E(Ydo(T=t))=E(E(YX,T=t))=E(E(Yπ(tx),T=t))

π ( 0.5 ∣ 30 ) = 0.4 \pi(0.5|30) = 0.4 π(0.5∣30)=0.4

π ( 0.5 ∣ 50 ) = 0.3 \pi(0.5|50) = 0.3 π(0.5∣50)=0.3

π ( 0.5 ∣ 80 ) = 0.3 \pi(0.5|80) = 0.3 π(0.5∣80)=0.3

ψ ( 0.5 ) = E ( E ( Y ∣ π ( t ∣ x ) , T = t ) ) = ( 2.5 ∗ 0.4 + 4 ∗ 0.3 + 1 ∗ 0.3 ) / 1 = 2.5 \psi(0.5)= \mathbb{E}(\mathbb{E}(Y|\pi(t|x),T=t))=(2.5* 0.4+4* 0.3+1* 0.3)/1 = 2.5 ψ(0.5)=E(E(Yπ(tx),T=t))=(2.50.4+40.3+10.3)/1=2.5

通过这个过程,我们减少了由 𝑋引入的潜在偏倚,使得结果 𝑌 更好地反映了治疗的真实效果。

3、VCNet模型原理

3.1 基本结构

image.png

先使用简单的神经网络估计 π ( t ∣ x ) \pi(t|x) π(tx),之后使用VCNet得到预测结果

3.1 𝜋(𝑡|𝑋)估计

由于本文所提到的treatment是连续的,因此本文将treatment分成了B个grid区间,通过softmax转化成一个多分类问题,再通过差值估计得到最后的估计结果。

π _ g r i d N N ( x ) = s o f t m a x ( w z ) \pi\_{grid}^{NN}(x)=softmax(wz) π_gridNN(x)=softmax(wz)

π N N ( t ∣ x ) = π _ g r i d t _ 1 , N N ( x ) + B ( π _ g r i d t _ 2 , N N ( x ) − π _ g r i d t _ 1 , N N ( x ) ) ( t − t _ 1 ) \\\pi^{NN}(t|x)=\pi\_{grid}^{t\_1,NN}(x)+B(\pi\_{grid}^{t\_2,NN}(x)-\pi\_{grid}^{t\_1,NN}(x))(t-t\_1) πNN(tx)=π_gridt_1,NN(x)+B(π_gridt_2,NN(x)π_gridt_1,NN(x))(tt_1)

image.png

3.2 VCNet变系数估计

那如何得到变系数?VCNet中采用样条估计得到 𝜃(𝑡),样条通过对间断点处的导数进行约束,可以实现间断点处的连续性。

一些简单的数学知识可以参考:码农小哥:一文读懂三次样条、曲线连续

假设 θ _ i ( t ) = ∑ _ l = 1 L a _ i , l ϕ _ l N N ( t ) \theta\_i(t)=\sum\_{l=1}^La\_{i,l}\phi\_l^{NN}(t) θ_i(t)=_l=1La_i,lϕ_lNN(t)KaTeX parse error: Undefined control sequence: \[ at position 11: \theta(t)=\̲[̲\theta\_{1}(t),…, 𝑑𝜃(𝑡) 是 𝜃(𝑡) 的维度。

其中, { ϕ _ l N N ( t ) } _ l = 1 L \left\{\phi\_{l}^{NN}(t)\right\}\_{l=1}^{L} {ϕ_lNN(t)}_l=1L为样条基, 𝑎𝑖,𝑙 为系数。则我们有

image

这里样条基的形式可以任意选择,假设以DRNet的多头形式估计变系数,DRNet其实也是VCNet的一个特例。

image.png

3.3 损失函数

同时优化π和μ

image.png

得到最优解

4、结果

从论文实验效果上看,VCNet对连续treatment的估计效果确实挺好的,同时加上DR也能很好的提升效果。

image

image

参考

  • 连续干预下的深度因果推断 – VCNet解读 - 知乎 (zhihu.com)

  • 因果推断笔记 | 连续型treatment因果效应估计之DRNet&VCNet - 知乎 (zhihu.com)


http://www.ppmy.cn/devtools/114883.html

相关文章

自定义类型:联合和枚举

一 ,联合体类型的声明 与结构体相似,联合体也是由一个或者多个成员构成,这些成员可以是不同类型。 但是与结构体不同的是 : 编译器只为联合体成员中的最大成员分配足够的内存空间。 联合体的特点是所有成员共用一块内存空间。所以…

mysql5.7.44安装教程

mysql5.7.44安装教程 1.windows 二进制压缩包从MySQL官网下载即可。 2.解压后,在根目录下创建my.ini文件 [mysql] # 设置 mysql 客户端默认字符集 default-character-setutf8 [mysqld] #设置 3306 端口 port 3306 # 设置 mysql 的安装目录 basedir …

VMware安装rustdesk服务器

一、准备 首先准备服务器镜像:22.04 虚拟机硬件配置选1G RAM 20G ROM就行 二、虚拟机安装过程 安装过程中选最小体积安装,并勾选安装SSH 安装完成后在SSH工具中连接(步骤可视实际情况跳过): //需要先连接外网 1.安…

list(二) (list模拟实现)

首先进行大框架 先写基本的结点类 有data next prev template<class T>class ListNode//或者使用struct 就不用在写public声明公有{public://这里不仅仅是成员函数 成员变量也要公有化 ListNode<T>* _next;ListNode<T>* _prev;T _data;}之后是链表list类…

【实践】应用访问Redis突然超时怎么处理?

目录标题 问题描述分析过程查看监控数据系统监控指标JVM监控指标Redis监控指标分析应用异常单机异常规律集群异常规律统计超时的key 初步结论验证结论访问Redis链路slowlogRedis单节点info all定位redis节点定位异常keybigkeystcpdump定位大key影响 经验总结 问题描述 某产品线…

【论文笔记】Are Large Kernels Better Teacheres than Transformers for ConvNets

Abstract 本文提出蒸馏中小核ConvNet做学生时&#xff0c;与Transformer相比&#xff0c;大核ConvNet因其高效的卷积操作和紧凑的权重共享&#xff0c;使得其做教师效果更好&#xff0c;更适合资源受限的应用。 用蒸馏从Transformers蒸到小核ConvNet的效果并不好&#xff0c;原…

Unity 设计模式 之 结构型模式 -【适配器模式】【桥接模式】 【组合模式】

Unity 设计模式 之 结构型模式 -【适配器模式】【桥接模式】 【组合模式】 目录 Unity 设计模式 之 结构型模式 -【适配器模式】【桥接模式】 【组合模式】 一、简单介绍 二、适配器模式 (Adapter Pattern) 1、什么时候使用适配器模式 2、使用适配器模式的好处 3、适配器…

Android中的四大组件

Android中的四大组件是Android应用开发中的基石&#xff0c;它们分别是Activity、Service、BroadcastReceiver和ContentProvider。这四个组件各自承担着不同的角色和功能&#xff0c;共同构成了Android应用程序的骨架。下面将详细阐述这四大组件的作用及其特点。 1. Activity&…