1D CNN+2D CNN+3D CNN

news/2024/11/22 21:44:06/

1D CNN+2D CNN+3D CNN

3D CNN过程详解
区别
1维卷积,核沿1个方向移动。一维CNN的输入和输出数据是2维的。主要用于时间序列数据。
2维卷积,核沿2个方向移动。二维CNN的输入输出数据是3维的。主要用于图像数据。
3维卷积,核沿3个方向移动。三维CNN的输入输出数据是4维的。主要用于3D图像数据(MRI,CT扫描)。
参考
卷积神经网络
1、padding
在卷积操作中,过滤器(核)的大小通常为奇数 3x3,5x5。好处有两点:

  • 在特征图(二维卷积)中存在一个中心像素点。有一个中心像素点会十分方便,便于指出过滤器的位置。
  • 在没有padding的情况下,经过卷积操作,输出的数据维度会减少。以二维卷积为例,输入大小nxn,过滤器大小fxf,卷积后输出的大小为(n-f+1)x(n-f+1)。
  • 为了避免这种情况发生,可以采取padding操作,padding的长度为p​,由于在二维情况下,上下左右都“添加”长度为p​的数据。构造新的输入大小为(n+2p)×(n+2p)​ , 卷积后的输出变为(n+2p−f+1)×(n+2p−f+1)​。
  • 如果想使卷积操作不缩减数据的维度,那么p的大小应为(f−1)/2,其中f是过滤器的大小,该值如果为奇数,会在原始数据上对称padding,否则,就会出现向上padding 1个,向下padding 2个,向左padding 1个,向右padding 2个的情况,破坏原始数据结构。

2、stride
卷积中的步长大小为s,指过滤器在输入数据上,水平/竖直方向上每次移动的步长,在Padding 公式的基础上,最终卷积输出的维度大小为:

⌊(n+2p−f)/s+1⌋×⌊(n+2p−f)/s+1⌋
⌊⌋符号指向下取整,在python 中为floor地板除操作。

3、channel

  • 通道,通常指数据的最后一个维度(三维),在计算机视觉中,RGB代表着3个通道(channel)。
  • 举例说明:现在有一张图片的大小为6×6×3,过滤器的大小为3×3×nc, 这里nc指过滤器的channel大小,该数值必须与输入的channel大小相同,即nc=3。
  • 如果有k个3×3×nc的过滤器,那么卷积后的输出维度为4×4×k。注意此时p=0,s=1,k表示输出数据的channel大小。一般情况下,k代表k个过滤器提取的k个特征,如k=128,代表128个3×3大小的过滤器,提取了128个特征,且卷积后的输出维度为4×4×128。
  • 在多层卷积网络中,以计算机视觉为例,通常情况下,图像的长和宽会逐渐缩小,channel数量会逐渐增加。

4、pooling

  • 除了卷积层,卷积网络使用池化层来缩减数据的大小,提高计算的速度 ,同时提高所提取特征的鲁棒性。 池化操作不需要对参数进行学习,只是神经网络中的静态属性。
  • 池化层中,数据的维度变化与卷积操作类似。池化后的channel数量与输入的channel数量相同,因为在每个channel上单独执行最大池化操作。
  • f=2, s=2,相当于对数据维度的减半操作,f指池化层过滤器大小,s指池化步长。
    参考CNN详解

关于2D CNN与3D CNN实例比较
数据集:3Dmnist
环境:python3.7
tensorflow2.1
keras2.3.1
2D CNN

#载入模型
from __future__ import division, print_function, absolute_importfrom keras.models import Sequential, model_from_json
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.callbacks import ReduceLROnPlateau, TensorBoardimport h5py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split#设置超参数
# set up hyperparameter
batch_size = 64
epochs = 20
#读取本地数据集
with h5py.File("full_dataset_vectors.h5","r") as h5:X_train, y_train = h5["X_train"][:], h5["y_train"][:]X_test, y_test = h5["X_test"][:], h5["y_test"][:]
#验证集图片的标签转化为one-hot的数组
y_train = to_categorical(y_train, num_classes=10)#使用2D卷积需要用到一个三维的矩阵
X_train = X_train.reshape(-1, 16, 16, 16)
X_test = X_test.reshape(-1, 16, 16, 16)
X_train,X_val,y_train,y_val = train_test_split(X_train, y_train,test_size=0.25,random_state=42)
#定义一个二维卷积层
# Conv2D layer
def Conv(filters=16, kernel_size=(3,3), activation='relu', input_shape=None):if input_shape:return Conv2D(filters=filters, kernel_size = kernel_size, padding='Same', activation=activation, input_shape=input_shape)else:return Conv2D(filters=filters, kernel_size = kernel_size, padding='Same', activation=activation)
#定义模型架构
# Define model
def CNN(input_dim, num_classes):model = Sequential()model.add((Conv(8, (3, 3), input_shape=input_dim)))model.add((Conv(16, (3, 3))))# model.add(BatchNormalization())model.add(MaxPool2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Conv(32, (3, 3)))model.add(Conv(64, (3, 3)))model.add(BatchNormalization())model.add(MaxPool2D())model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(4096, activation='relu'))model.add(Dropout(0.5))model.add(Dense(1024, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))return model
#定义训练参数,验证方法,保存模型以及加载模型
# Train Modeldef train(optimizer, scheduler, gen):global modeltensorboard = TensorBoard()print("Training...Please wait")model.compile(optimizer='adam', loss="categorical_crossentropy", metrics=["accuracy"])model.fit_generator(gen.flow(X_train, y_train, batch_size=batch_size),epochs=epochs, validation_data=(X_val, y_val),verbose=2, steps_per_epoch=X_train.shape[0] // batch_size,callbacks=[scheduler, tensorboard])def evaluate():global modelpred = model.predict(X_test)pred = np.argmax(pred, axis=1)print(accuracy_score(pred, y_test))# Heat maparray = confusion_matrix(y_test, pred)cm = pd.DataFrame(array, index=range(10), columns=range(10))plt.figure(figsize=(20, 20))sns.heatmap(cm, annot=True)plt.show()def save_model():global modelmodel_json = model.to_json()with open('model_2D.json', 'w') as f:f.write(model_json)model.save_weights('model_2D.h5')print("Model Saved")def load_model():f = open("model_2D.json", "r")model_json = f.read()f.close()loaded_model = model_from_json(model_json)loaded_model.load_weights('model_2D.h5')print("Model Loaded.")return loaded_modelif __name__ == '__main__':optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)scheduler = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-5)model = CNN((16, 16, 16), 10)gen = ImageDataGenerator(rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1)gen.fit(X_train)train(optimizer, scheduler, gen)evaluate()save_model()

结果

Training...Please wait
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 16, 16, 8)         1160      
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 16, 16, 16)        1168      
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 8, 8, 16)          0         
_________________________________________________________________
dropout (Dropout)            (None, 8, 8, 16)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 8, 8, 32)          4640      
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 8, 8, 64)          18496     
_________________________________________________________________
batch_normalization (BatchNo (None, 8, 8, 64)          256       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 4, 4, 64)          0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 4, 4, 64)          0         
_________________________________________________________________
flatten (Flatten)            (None, 1024)              0         
_________________________________________________________________
dense (Dense)                (None, 4096)              4198400   
_________________________________________________________________
dropout_2 (Dropout)          (None, 4096)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 1024)              4195328   
_________________________________________________________________
dropout_3 (Dropout)          (None, 1024)              0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                10250     
=================================================================
Total params: 8,429,698
Trainable params: 8,429,570
Non-trainable params: 128
_________________________________________________________________
Train for 117 steps, validate on 2500 samples
Epoch 1/20
117/117 - 9s - loss: 1.9939 - accuracy: 0.3085 - val_loss: 2.2722 - val_accuracy: 0.1252
Epoch 2/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.4384 - accuracy: 0.4944 - val_loss: 1.9317 - val_accuracy: 0.3584
Epoch 3/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.3030 - accuracy: 0.5395 - val_loss: 1.6192 - val_accuracy: 0.4788
Epoch 4/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.2372 - accuracy: 0.5594 - val_loss: 1.3695 - val_accuracy: 0.5808
Epoch 5/20
117/117 - 5s - loss: 1.1820 - accuracy: 0.5783 - val_loss: 1.1514 - val_accuracy: 0.6184
Epoch 6/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.1672 - accuracy: 0.5901 - val_loss: 1.0569 - val_accuracy: 0.6252
Epoch 7/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.1454 - accuracy: 0.5925 - val_loss: 1.0906 - val_accuracy: 0.6112
Epoch 8/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.1074 - accuracy: 0.6065 - val_loss: 0.9975 - val_accuracy: 0.6516
Epoch 9/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0965 - accuracy: 0.6093 - val_loss: 0.9653 - val_accuracy: 0.6644
Epoch 10/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 1.0863 - accuracy: 0.6153 - val_loss: 1.0170 - val_accuracy: 0.6396
Epoch 11/20
117/117 - 4s - loss: 1.0773 - accuracy: 0.6182 - val_loss: 0.9661 - val_accuracy: 0.6580
Epoch 12/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 1.0577 - accuracy: 0.6263 - val_loss: 1.0404 - val_accuracy: 0.6388
Epoch 13/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 1.0354 - accuracy: 0.6299 - val_loss: 0.9637 - val_accuracy: 0.6656
Epoch 14/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0324 - accuracy: 0.6260 - val_loss: 0.9640 - val_accuracy: 0.6608
Epoch 15/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0233 - accuracy: 0.6352 - val_loss: 0.9413 - val_accuracy: 0.6680
Epoch 16/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 1.0041 - accuracy: 0.6435 - val_loss: 0.9782 - val_accuracy: 0.6504
Epoch 17/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 0.9987 - accuracy: 0.6505 - val_loss: 0.9292 - val_accuracy: 0.6696
Epoch 18/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 0.9927 - accuracy: 0.6487 - val_loss: 0.9566 - val_accuracy: 0.6584
Epoch 19/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 5s - loss: 0.9940 - accuracy: 0.6501 - val_loss: 0.9418 - val_accuracy: 0.6664
Epoch 20/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
117/117 - 4s - loss: 0.9892 - accuracy: 0.6526 - val_loss: 0.9247 - val_accuracy: 0.6752
0.677
Model SavedProcess finished with exit code 0

混淆矩阵:
在这里插入图片描述

3D CNN

from __future__ import division, print_function, absolute_importfrom tensorflow.keras.models import Sequential, model_from_json
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv3D, MaxPool3D, BatchNormalization, Input
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from tensorflow.keras.callbacks import ReduceLROnPlateau, TensorBoard
#Using TensorFlow backend.import h5py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')from sklearn.metrics import confusion_matrix, accuracy_score# Hyper Parameter
batch_size = 86
epochs = 20
# Set up TensorBoard
tensorboard = TensorBoard(batch_size=batch_size)with h5py.File("full_dataset_vectors.h5", 'r') as h5:X_train, y_train = h5["X_train"][:], h5["y_train"][:]X_test, y_test = h5["X_test"][:], h5["y_test"][:]# Translate data to color
#给图片添加 RGB 数据通道的维度
def array_to_color(array, cmap="Oranges"):s_m = plt.cm.ScalarMappable(cmap=cmap)return s_m.to_rgba(array)[:,:-1]def translate(x):xx = np.ndarray((x.shape[0], 4096, 3))for i in range(x.shape[0]):xx[i] = array_to_color(x[i])if i % 1000 == 0:print(i)# Free Memorydel xreturn xx#数据转换为
y_train = to_categorical(y_train, num_classes=10)
# y_test = to_categorical(y_test, num_classes=10)X_train = translate(X_train).reshape(-1, 16, 16, 16, 3)
X_test  = translate(X_test).reshape(-1, 16, 16, 16, 3)# Conv3D layer
def Conv(filters=16, kernel_size=(3,3,3), activation='relu', input_shape=None):if input_shape:return Conv3D(filters=filters, kernel_size=kernel_size, padding='Same', activation=activation, input_shape=input_shape)else:return Conv3D(filters=filters, kernel_size=kernel_size, padding='Same', activation=activation)# Define Model
def CNN(input_dim, num_classes):model = Sequential()model.add(Conv(8, (3,3,3), input_shape=input_dim))model.add(Conv(16, (3,3,3)))# model.add(BatchNormalization())model.add(MaxPool3D())# model.add(Dropout(0.25))model.add(Conv(32, (3,3,3)))model.add(Conv(64, (3,3,3)))model.add(BatchNormalization())model.add(MaxPool3D())model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(4096, activation='relu'))model.add(Dropout(0.5))model.add(Dense(1024, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))return model# Train Model
def train(optimizer, scheduler):global modelprint("Training...")model.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"])model.summary()model.fit(x=X_train, y=y_train, batch_size=batch_size, epochs=epochs, validation_split=0.15,verbose=2, callbacks=[scheduler, tensorboard])def evaluate():global modelpred = model.predict(X_test)pred = np.argmax(pred, axis=1)print(accuracy_score(pred,y_test))# Heat Maparray = confusion_matrix(y_test, pred)cm = pd.DataFrame(array, index = range(10), columns = range(10))plt.figure(figsize=(20,20))sns.heatmap(cm, annot=True)plt.show()def save_model():global modelmodel_json = model.to_json()with open('model/model_3D.json', 'w') as f:f.write(model_json)model.save_weights('model/model_3D.h5')print('Model Saved.')def load_model():f = open('model/model_3D.json', 'r')model_json = f.read()f.close()loaded_model = model_from_json(model_json)loaded_model.load_weights('model/model_3D.h5')print("Model Loaded.")return loaded_modelif __name__ == '__main__':optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)scheduler = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=1e-5)model = CNN((16,16,16,3), 10)train(optimizer, scheduler)evaluate()save_model()

结果

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
0
1000Training...
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv3d (Conv3D)              (None, 16, 16, 16, 8)     656       
_________________________________________________________________
conv3d_1 (Conv3D)            (None, 16, 16, 16, 16)    3472      
_________________________________________________________________
max_pooling3d (MaxPooling3D) (None, 8, 8, 8, 16)       0         
_________________________________________________________________
conv3d_2 (Conv3D)            (None, 8, 8, 8, 32)       13856     
_________________________________________________________________
conv3d_3 (Conv3D)            (None, 8, 8, 8, 64)       55360     
_________________________________________________________________
batch_normalization (BatchNo (None, 8, 8, 8, 64)       256       
_________________________________________________________________
max_pooling3d_1 (MaxPooling3 (None, 4, 4, 4, 64)       0         
_________________________________________________________________
dropout (Dropout)            (None, 4, 4, 4, 64)       0         
_________________________________________________________________
flatten (Flatten)            (None, 4096)              0         
_________________________________________________________________
dense (Dense)                (None, 4096)              16781312  
_________________________________________________________________
dropout_1 (Dropout)          (None, 4096)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 1024)              4195328   
_________________________________________________________________
dropout_2 (Dropout)          (None, 1024)              0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                10250     
=================================================================
Total params: 21,060,490
Trainable params: 21,060,362
Non-trainable params: 128
_________________________________________________________________
Train on 8500 samples, validate on 1500 samples
Epoch 1/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 9s - loss: 2.6471 - accuracy: 0.1839 - val_loss: 2.2708 - val_accuracy: 0.2000
Epoch 2/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.6287 - accuracy: 0.4285 - val_loss: 2.8031 - val_accuracy: 0.1033
Epoch 3/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.2695 - accuracy: 0.5579 - val_loss: 3.1281 - val_accuracy: 0.1900
Epoch 4/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.1059 - accuracy: 0.6122 - val_loss: 3.4772 - val_accuracy: 0.2380
Epoch 5/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 1.0447 - accuracy: 0.6307 - val_loss: 1.3234 - val_accuracy: 0.5460
Epoch 6/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.9735 - accuracy: 0.6654 - val_loss: 1.3245 - val_accuracy: 0.5960
Epoch 7/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.9088 - accuracy: 0.6832 - val_loss: 0.9973 - val_accuracy: 0.6500
Epoch 8/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.8433 - accuracy: 0.7093 - val_loss: 1.1331 - val_accuracy: 0.6413
Epoch 9/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.7784 - accuracy: 0.7293 - val_loss: 0.9897 - val_accuracy: 0.6687
Epoch 10/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.7293 - accuracy: 0.7451 - val_loss: 0.9537 - val_accuracy: 0.6693
Epoch 11/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.6554 - accuracy: 0.7719 - val_loss: 0.9934 - val_accuracy: 0.6653
Epoch 12/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.6129 - accuracy: 0.7887 - val_loss: 0.8710 - val_accuracy: 0.6987
Epoch 13/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.5138 - accuracy: 0.8218 - val_loss: 0.8410 - val_accuracy: 0.7220
Epoch 14/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.4538 - accuracy: 0.8418 - val_loss: 0.8636 - val_accuracy: 0.7200
Epoch 15/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.4126 - accuracy: 0.8579 - val_loss: 1.7215 - val_accuracy: 0.6053
Epoch 16/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.3595 - accuracy: 0.8766 - val_loss: 0.9869 - val_accuracy: 0.7327
Epoch 17/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.3179 - accuracy: 0.8892 - val_loss: 1.0798 - val_accuracy: 0.7173
Epoch 18/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.3042 - accuracy: 0.8953 - val_loss: 1.0762 - val_accuracy: 0.6927
Epoch 19/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.2573 - accuracy: 0.9146 - val_loss: 1.0316 - val_accuracy: 0.7207
Epoch 20/20
WARNING:tensorflow:Reduce LR on plateau conditioned on metric `val_acc` which is not available. Available metrics are: loss,accuracy,val_loss,val_accuracy,lr
8500/8500 - 6s - loss: 0.2203 - accuracy: 0.9236 - val_loss: 0.9373 - val_accuracy: 0.7267
0.7325
Model Saved.Process finished with exit code 0

混淆矩阵
在这里插入图片描述


http://www.ppmy.cn/news/149131.html

相关文章

[ARC120E]1D Party

1D Party 题解 我们可以将原来的序列随时间变化转化成一个图像,纵轴代表时间,横轴代表 A A A的值。 那么我们可以得到这样一个图像: 其中不同颜色代表不同的点的运动路径。 由于要最优,我们肯定要让每个点都一直处于运动状态&…

keras 一维残差神经网络(1D-ResNet)和一维深度残差收缩网络(1D-DRSN)

1.介绍 本文整合了部分深度残差收缩网络以及残差神经网络现有的2D及1D版本资源,并给出TensorFlow&Keras环境下的1D ResNet和DRSN程序和使用示例。 2.资源整合 深度残差收缩网络: -介绍:http://t.csdn.cn/DvnBL -(pytorch&a…

[HNOI2008]玩具装箱(1D/1D动态规划)

[HNOI2008]玩具装箱 题目描述 P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。 P 教授有编号为 1 ⋯ n 1 \cdot…

1D/2D动画混合

1、动画混合 游戏动画中常见的功能就是在两个或者多个相似运动之间进行混合,比如: 根据角色的速度来混合行走和奔跑动画根据角色的转向来混合向左或向右倾斜的动作 可以理解是高级版的动画过渡,之前的动画过渡是处理两个不同类型动作之间切…

1D/2D/3D卷积详解

目录 概述1D卷积2D卷积3D卷积 概述 1D/2D/3D卷积计算方式都是一样的,其中2D卷积应用范围最广。与全连接层相比,卷积层的主要优点是参数共享和稀疏连接,这使得卷积操作所需要学习的参数数量大大减少。卷积计算方式如下: 1D卷积 …

3D Instances as 1D Kernels

Abstract 我们引入了一种3D实例表示,称为实例内核,其中实例由一维向量表示,这些向量对3D实例的语义、位置和形状信息进行编码。我们表明,实例内核通过简单地扫描整个内核来实现简单的mask推断场景,避免严重依赖标准3D实例分割管道中的proposals或启发式聚类算法。实例内核…

理解1D、2D、3D卷积神经网络的概念

目录 引言二维CNN | Conv2D一维CNN | Conv1D三维CNN | Conv3D总结 引言 当我们说卷积神经网络(CNN)时,通常是指用于图像分类的二维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指…

1D/1D动态规划

介绍 1 D / 1 D 1D/1D 1D/1D动态规划,就是指状态数为 O ( n ) O(n) O(n),转移为 O ( n ) O(n) O(n)的动态规划方程。一般的情况下求解的时间复杂度为 O ( n 2 ) O(n^2) O(n2),但是,通过优化可以使时间复杂度降到 O ( n l o g n ) …