keras 一维残差神经网络(1D-ResNet)和一维深度残差收缩网络(1D-DRSN)

news/2025/1/11 20:58:11/

1.介绍

本文整合了部分深度残差收缩网络以及残差神经网络现有的2D及1D版本资源,并给出TensorFlow&Keras环境下的1D ResNet和DRSN程序和使用示例。

2.资源整合

深度残差收缩网络:
-介绍:http://t.csdn.cn/DvnBL
-(pytorch,2D)https://cloud.tencent.com/developer/article/1813376
-(pytorch,2D)https://zhuanlan.zhihu.com/p/337346575
-(pytorch,2D)https://blog.csdn.net/weixin_47174159/article/details/115409058
-(Tensorflow2.0&Keras,2D)https://blog.csdn.net/qq_36758914/article/details/109452735
-(pytorch,1D)https://github.com/liguge/Deep-Residual-Shrinkage-Networks-for-intelligent-fault-diagnosis-DRSN-
-(官方,TFLearn-1D、TensorFlow&Keras-2D、TFLearn-2D)https://github.com/zhao62/Deep-Residual-Shrinkage-Networks

残差神经网络

-(pytorch,1D)https://github.com/StChenHaoGitHub/1D-deeplearning-model-LeNet-AlexNet-ZFNet-VGG-GoogLeNet-ResNet-DenseNet
-(TensorFlow,1D)https://github.com/ralasun/tensorflow-resnet-1d/blob/master/Resnet.ipynb
-(Keras,2D)https://keras.io/api/applications/resnet/#resnet50v2-function

3.ResNet-1D

修改内容:参考DRSN风格,以keras.applications.ResNet50V21为基础,将2D操作更改为1D操作。

代码片段:复制以下内容或前往github下载https://github.com/M73ACat/ResNet-1D-DRSN-1D
示例结构图,参考2

图 文献2中的模型结构图
from keras.layers import (Activation, Add, BatchNormalization, Conv1D, Dense,GlobalAveragePooling1D, Input)
from keras.models import Model
from keras.optimizers import Nadamdef res_block(x, filters, block_nums, kernel_size=3, stride=1):"""A residual block.Arguments:x: input tensor.filters: integer, filters of the bottleneck layer.block_nums: integer, numbers of block. kernel_size: default 3, kernel size of the bottleneck layer.stride: default 1, stride of the first layer.Returns:Output tensor for the residual block."""for _ in range(block_nums):preact = BatchNormalization(epsilon=1.001e-5)(x)preact = Activation('relu')(preact)shortcut = Conv1D(4 * filters, 1, strides=stride,padding='same')(preact)x = Conv1D(filters, 1, strides=1, use_bias=False)(preact)x = BatchNormalization(epsilon=1.001e-5)(x)x = Activation('relu')(x)x = Conv1D(filters,kernel_size,strides=stride,use_bias=False,padding='same')(x)x = BatchNormalization(epsilon=1.001e-5)(x)x = Activation('relu')(x)x = Conv1D(4 * filters, 1)(x)x = Add()([shortcut, x])return x

使用示例(建立图1所示ResNet模型):

inputs = 2048
outputs = 8x_input  = Input(shape=(inputs,1))
x = Conv1D(4,3,2,padding='same')(x_input)x = res_block(x,filters=4,block_nums=1,stride=2)
x = res_block(x,filters=4,block_nums=3,stride=1)x = res_block(x,filters=8,block_nums=1,stride=2)
x = res_block(x,filters=8,block_nums=3,stride=1)x = res_block(x,filters=16,block_nums=1,stride=2)
x = res_block(x,filters=16,block_nums=3,stride=1)x = BatchNormalization()(x)
x = Activation('relu')(x)   
x = GlobalAveragePooling1D()(x)x = Dense(outputs,activation='softmax')(x)model = Model(inputs=x_input,outputs=x)
optimizers = Nadam(lr=1e-5)
model.compile(optimizer = optimizers, loss= 'categorical_crossentropy',metrics=['accuracy'])
model.summary()

4.DRSN-1D

修改内容:以DRSN Keras2D3为基础,将2D操作更改为1D操作。

代码片段:复制以下内容或前往github下载https://github.com/M73ACat/ResNet-1D-DRSN-1D

import keras
from keras import backend as K
from keras.layers import (Activation, AveragePooling1D, BatchNormalization,Conv1D, Dense, GlobalAveragePooling1D, Input)
from keras.layers.core import Lambda
from keras.models import Model
from keras.optimizers import Nadam
from keras.regularizers import l2def abs_backend(inputs):return K.abs(inputs)def expand_dim_backend(inputs):return K.expand_dims(inputs,1)def sign_backend(inputs):return K.sign(inputs)def pad_backend(inputs, in_channels, out_channels):pad_dim = (out_channels - in_channels)//2inputs = K.expand_dims(inputs)inputs = K.spatial_2d_padding(inputs,padding=((0,0),(pad_dim,pad_dim)))return K.squeeze(inputs,-1)def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False,downsample_strides=2):"""A residual_shrinkage_block.Arguments:incoming: input tensor.nb_blocks: integer, numbers of block. out_channels: integer, filters of the conv1d layer.downsample: default False, downsample or not.downsample_strides: default 2, stride of the first layer.Returns:Output tensor for the residual block."""residual = incomingin_channels = incoming.get_shape().as_list()[-1]for _ in range(nb_blocks):identity = residualif not downsample:downsample_strides = 1residual = BatchNormalization()(residual)residual = Activation('relu')(residual)residual = Conv1D(out_channels, 3, strides=downsample_strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual)residual = BatchNormalization()(residual)residual = Activation('relu')(residual)residual = Conv1D(out_channels, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual)# Calculate global meansresidual_abs = Lambda(abs_backend)(residual)abs_mean = GlobalAveragePooling1D()(residual_abs)# Calculate scaling coefficientsscales = Dense(out_channels, activation=None, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(abs_mean)scales = BatchNormalization()(scales)scales = Activation('relu')(scales)scales = Dense(out_channels, activation='sigmoid', kernel_regularizer=l2(1e-4))(scales)scales = Lambda(expand_dim_backend)(scales)# Calculate thresholdsthres = keras.layers.multiply([abs_mean, scales])# Soft thresholdingsub = keras.layers.subtract([residual_abs, thres])zeros = keras.layers.subtract([sub, sub])n_sub = keras.layers.maximum([sub, zeros])residual = keras.layers.multiply([Lambda(sign_backend)(residual), n_sub])# Downsampling using the pooL-size of (1, 1)if downsample_strides > 1:identity = AveragePooling1D(pool_size=1, strides=2)(identity)# Zero_padding or Conv1D to match channelsif in_channels != out_channels:""" padding """identity = Lambda(pad_backend, arguments={'in_channels':in_channels,'out_channels':out_channels})(identity)""" Conv1D """# identity = Conv1D(out_channels,1,strides=1,padding='same')(identity)residual = keras.layers.add([residual, identity])return residual

使用示例(建立图1所示DRSN模型):

inputs = 2048
outputs = 8x_input = Input(shape=(inputs,1))
x = Conv1D(4,3,2,padding='same')(x_input)
x = residual_shrinkage_block(x, 1, 4, downsample=True)
x = residual_shrinkage_block(x, 3, 4, downsample=False)x = residual_shrinkage_block(x, 1, 8, downsample=True)
x = residual_shrinkage_block(x, 3, 8, downsample=False)x = residual_shrinkage_block(x, 1, 16, downsample=True)
x = residual_shrinkage_block(x, 3, 16, downsample=False)x = BatchNormalization()(x)
x = Activation('relu')(x)  
x = GlobalAveragePooling1D()(x)x = Dense(outputs,activation='softmax')(x)model = Model(inputs=x_input,outputs=x)
optimizers = Nadam(lr=1e-5)
model.compile(optimizer = optimizers, loss= 'categorical_crossentropy',metrics=['accuracy'])
model.summary()

参考文献


  1. https://keras.io/api/applications/resnet/#resnet50v2-function ↩︎

  2. ZHAO M., ZHONG S., FU X., et al. Deep Residual Shrinkage Networks for Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7):4681-4690. ↩︎

  3. https://github.com/zhao62/Deep-Residual-Shrinkage-Networks/blob/master/DRSN_Keras.py ↩︎


http://www.ppmy.cn/news/149129.html

相关文章

[HNOI2008]玩具装箱(1D/1D动态规划)

[HNOI2008]玩具装箱 题目描述 P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。 P 教授有编号为 1 ⋯ n 1 \cdot…

1D/2D动画混合

1、动画混合 游戏动画中常见的功能就是在两个或者多个相似运动之间进行混合,比如: 根据角色的速度来混合行走和奔跑动画根据角色的转向来混合向左或向右倾斜的动作 可以理解是高级版的动画过渡,之前的动画过渡是处理两个不同类型动作之间切…

1D/2D/3D卷积详解

目录 概述1D卷积2D卷积3D卷积 概述 1D/2D/3D卷积计算方式都是一样的,其中2D卷积应用范围最广。与全连接层相比,卷积层的主要优点是参数共享和稀疏连接,这使得卷积操作所需要学习的参数数量大大减少。卷积计算方式如下: 1D卷积 …

3D Instances as 1D Kernels

Abstract 我们引入了一种3D实例表示,称为实例内核,其中实例由一维向量表示,这些向量对3D实例的语义、位置和形状信息进行编码。我们表明,实例内核通过简单地扫描整个内核来实现简单的mask推断场景,避免严重依赖标准3D实例分割管道中的proposals或启发式聚类算法。实例内核…

理解1D、2D、3D卷积神经网络的概念

目录 引言二维CNN | Conv2D一维CNN | Conv1D三维CNN | Conv3D总结 引言 当我们说卷积神经网络(CNN)时,通常是指用于图像分类的二维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指…

1D/1D动态规划

介绍 1 D / 1 D 1D/1D 1D/1D动态规划,就是指状态数为 O ( n ) O(n) O(n),转移为 O ( n ) O(n) O(n)的动态规划方程。一般的情况下求解的时间复杂度为 O ( n 2 ) O(n^2) O(n2),但是,通过优化可以使时间复杂度降到 O ( n l o g n ) …

深度学习之3D卷积神经网络

一、概述 3D CNN主要运用在视频分类、动作识别等领域,它是在2D CNN的基础上改变而来。由于2D CNN不能很好的捕获时序上的信息,因此我们采用3D CNN,这样就能将视频中时序信息进行很好的利用。首先我们介绍一下2D CNN与3D CNN的区别。如图1所示…

【一】1D测量 Measuring——meature_pairs()算子

😊😊😊欢迎来到本博客😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有…