R语言绘制动态网络图Network教程WGCNA

server/2024/12/23 0:36:25/

今天分享的笔记是使用NetworkD3对WGCNA的共表达网络进行可视化,创建交互式动态网络图,展示基因之间的相互关系,可以用于转录组或者其他调控网络展示。

加权基因共表达网络分析 (WGCNA, Weighted correlation network analysis)是用来描述不同样品之间基因关联模式的系统生物学方法,可以用来鉴定高度协同变化的基因集,并根据基因集的内连性和基因集与表型之间的关联鉴定候补生物标记基因或治疗靶点。

alt

例如上图展示特异性模块内的基因共表达网络,点的大小和深浅代表该基因在网络中连通性的高低。转录因子用三角形表示, 其他基因用圆形表示。

如何绘制动态网络图?

首先,加载R包和数据,所用到的数据是WGCNA分析得到的输出网络文件,格式是Cytoscape的输入格式,本文的示例数据已上传,留言区回复邮箱,系统自动发送示例数据和全部代码。

library(networkD3)
library(tidyverse)
library(vroom)

df_node <- vroom::vroom("CytoscapeInput-nodes-black.txt")
df_edge <- vroom::vroom("CytoscapeInput-edges-black.txt")

> head(df_node)
# A tibble: 6 × 3
  nodeName  altName   `nodeAttr[nodesPresent, ]`
  <chr>     <chr>     <chr>                     
1 AT1G01010 AT1G01010 black                     
2 AT1G01090 AT1G01090 black                     
3 AT1G01180 AT1G01180 black                     
                  
> head(df_edge)
# A tibble: 6 × 6
  fromNode  toNode    weight direction  fromAltName toAltName
  <chr>     <chr>      <dbl> <chr>      <chr>       <chr>    
1 AT1G69920 AT1G71030  0.445 undirected AT1G69920   AT1G71030
2 AT1G15125 AT1G71030  0.440 undirected AT1G15125   AT1G71030
3 AT1G02920 AT1G71030  0.438 undirected AT1G02920   AT1G71030

df_node文件保存节点信息,df_edge保存边的信息,包括起始位置和结束为止,以及连线的权重大小。这里每个节点可以表示一个基因,节点之间的weight权重值用来表示两个基因之间的关联性。

数据的过滤与筛选

df_edge <- df_edge %>% arrange(-weight) %>% head(100)
# 删除自身和自身相关位点
df_edge <- df_edge[which(df_edge$fromNode != df_edge$toNode),]
networkData <- df_edge[1:2]
simpleNetwork(networkData,linkDistance = 100)

由于基因数量比较多,因此这里先按照权重值进行排序,然后选取前100行,这一步可以根据你的需要设置,也可以按照制定阈值过滤,然后绘制一张简单版本的网络图:

alt

格式转换与重新编码

alt

由于我们WGCNA输出的文件中节点都是通过基因ID来表示,但是绘图时无法直接识别节点ID,需要修改为数字0、1、2...因此,需要对节点进行重新修改。

# 转换格式
df_edge_net <- df_edge[,c(1,2,3)] %>% as.data.frame()
df_node_net <- df_node[,c(1,3)] %>% as.data.frame()

colnames(df_edge_net) <- c("source" ,"target" ,"value")
colnames(df_node_net) <- c("name","group")

# 合并第一列和第二列,并取并集
merged_elements <- union_all(df_edge_net$source,df_edge_net$target) %>% unique()

# 对合并后的元素进行编号
element_numbers <- seq_along(merged_elements)

# 创建一个新的数据框,包含合并的元素和对应的编号
result_df <- data.frame(merged_elements, element_numbers)
result_df$element_numbers <- result_df$element_numbers-1

# 使用映射表更新原始数据框的第一列和第二列
df_edge_net$source <- result_df$element_numbers[match(df_edge_net$source, result_df$merged_elements)]
df_edge_net$target <- result_df$element_numbers[match(df_edge_net$target, result_df$merged_elements)]

经过这一步处理后能够得到两个新的数据框,这就是绘制动态网络图的关键输入数据。在此基础上,我们还可以添加一些额外的信息,比如按照不同的分组将节点赋予不同的颜色,或者根据根据基因之间的正调控和负调控设置连接线的颜色。

# 生成模拟数据
df_edge_net$value <- c(runif(nrow(df_edge_net)/2,0,1),runif(nrow(df_edge_net)/2,0,5))
df_edge_net$color <- c(rep("red",50),rep("green",50))

value值表示节点之间连线的权重大小,可以用来展示两个基因之间的关联程度,该值越大线越粗,关联性越强。

color值可以用来设置连线的颜色,比如设置正调控为红色,负调控为绿色。

除了设置节点与节点之间边的关系,还能设置单个节点的参数,比如通过下面的代码设置节点的大小用来表示基因的表达量,表达量高的基因节点直径越大。还可以用过Type将节点进行分组,比如转录因子为A组,目标基因为B组等等。

df_node_net <- result_df
df_node_net$size <- runif(nrow(df_node_net),0,20)
df_node_net$type <- rep(c("A","B","C"),10000)[1:nrow(df_node_net)]
colnames(df_node_net) <- c("name""group""size","type")

绘制动态网络图

接下来通过调用forceNetwork绘制网络图,将刚刚的两个数据作为输入文件,设置如下参数即可获得结果图。

p <- forceNetwork(Links = df_edge_net, 
             Nodes = df_node_net, 
             Source = "source"
             Target = "target",
             linkColour=df_edge_net$color,
             arrows=TRUE,
             legend=TRUE,
             Value = "value",
             NodeID = "name",
             Group = "type"
             bounded=F,
             opacityNoHover = 0.5,
             linkDistance = 100,
             charge=-500,
             Nodesize='size',
             # radiusCalculation = "Math.sqrt(d.nodesize,2)*5",
             # linkWidth = JS("function(d) { return Math.sqrt(d.value)-4;}"),
             # linkDistance=JS("function(d){return 1/(d.value)*100 }"),
             opacity = 0.9,
             zoom = T,
             fontFamily = "Aril",
             fontSize = 12) 
p
alt

这张图是通过JS实现的,因此支持动态交互,比如将鼠标放在节点上会显示节点名称(基因ID),还可以拖动节点查看与之关联节点。

alt

如果想要将其保存下来,最好的方法是html格式,这样仍具有动态交互属性。

saveNetwork(network = p,file = 'Net.html')

今天分享的内容就到这里,感谢您的阅读,如需本文代码和数据,请把收件邮箱发在评论区,欢迎点赞转发分享。

本文由 mdnice 多平台发布


http://www.ppmy.cn/server/9698.html

相关文章

Marching Cubes算法

Marching Cubes算法 1. 简介2. 算法原理的理解2.1 如何找到面经过的这些小块(六面体)&#xff1f;2.2 找到后&#xff0c;如何又进一步的找到面与这些小块(六面体)的交点&#xff1b;2.3 这些交点按照怎么的拓扑连接关系连接&#xff0c;是怎么操作的&#xff1f; 3. 总结4. 参…

pip安装swig@FreeBSD

SWIG (Simplified Wrapper and Interface Generator) 是一个用于连接 C/C 代码与其他高级编程语言&#xff08;如Python、Java、C# 等&#xff09;的工具。它允许开发人员将现有的 C/C 代码封装成可以在其他语言中调用的接口&#xff0c;而无需手动编写大量的代码。 SWIG 的工…

手机文件怎么传给商家打印?

在数字化时代&#xff0c;手机已经成为我们生活和工作中不可或缺的工具。当需要将手机中的文件传给商家打印时&#xff0c;传统的打印店往往要求通过微信等社交软件传输文件&#xff0c;这种方式非常操作繁琐。那么&#xff0c;手机文件怎么传给商家打印呢&#xff1f;琢贝云打…

超越ChatGPT,国内快速访问的强大 AI 工具 Claude

claude 3 opus面世后&#xff0c;网上盛传吊打了GPT-4。网上这几天也已经有了许多应用&#xff0c;但竟然还有很多小伙伴不知道国内怎么用gpt&#xff0c;也不知道怎么去用这个据说已经吊打了gpt-4的claude3。 今天我们想要进行的一项尝试就是—— 用claude3和gpt4&#xff0c…

海尔推行TPM管理的经验分享:打造高效制造新标杆

海尔集团&#xff0c;作为家电行业的佼佼者&#xff0c;其推行TPM&#xff08;全面生产维护&#xff09;管理的成功经验&#xff0c;无疑为众多寻求管理突破的企业提供了宝贵的借鉴。 一、TPM管理的核心理念 TPM&#xff08;Total Productive Maintenance&#xff09;即全面生…

探索Python爬虫利器:Scrapy框架解析与实战

探索Python爬虫利器&#xff1a;Scrapy框架解析与实战 在当今信息时代&#xff0c;数据的价值不言而喻。而Python爬虫技术&#xff0c;作为获取网络数据的重要手段&#xff0c;已经成为了许多数据分析师、开发者和研究者必备的技能。本文将为您详细介绍Python爬虫技术中的利器—…

sql(ctfhub)

一.整数型注入 输入1 输入2 输入2-1&#xff0c;回显为1的结果&#xff0c;说明是数字型&#xff0c;只有数字型才可加减 判断字段数为2 查询数据库 查表 查列 显示flag内容 二.字符型注入 输入1 输入2 输入2-1&#xff0c;说明为字符型&#xff0c;不是数字型 判断闭合方式为…

OpenTiny 亮相 W3C 2024春季顾问委员会会议,共话行业新趋势。

近日&#xff0c;万维网联盟&#xff08;World Wide Web Consortium&#xff0c;简称 W3C&#xff09;于4月8日-4月9日在日本召开2024年顾问委员会会议&#xff08;Advisory Committee Meeting&#xff09;。华为产业发展专家丁蔚博士及华为云 OpenTiny 项目的 Web 前端框架技术…