故障诊断 | 一个小创新:特征提取+KAN分类

server/2024/12/23 0:25:39/

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

轴承故障全家桶更新 | 基于VGG16的时频图像分类算法-CSDN博客

轴承故障全家桶更新 | CNN、LSTM、Transformer、TCN、串行、并行模型、时频图像、EMD分解等集合​都在这里-CSDN博客

Python轴承故障诊断 (19)基于Transformer-BiLSTM的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

视觉顶会论文 | 基于Swin Transformer的轴承故障诊断-CSDN博客

Python轴承故障诊断 | 多尺度特征交叉注意力融合模型-CSDN博客

SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客

速发论文 | 基于 2D-SWinTransformer+1D-CNN-SENet并行故障诊断模型-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

1DCNN-2DResNet并行故障诊断模型-CSDN博客

基于改进1D-VGG模型的轴承故障诊断和t-SNE可视化-CSDN博客

基于K-NN + GCN的轴承故障诊断模型-CSDN博客

故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客

独家首发 | 基于 2D-SwinTransformer + BiGRU-GlobalAttention的并行故障诊断模型-CSDN博客

位置编码祛魅 | 详解Transformer中位置编码Positional Encoding-CSDN博客

创新点 | 基于快速傅里叶卷积(FFC) 的故障诊断模型-CSDN博客

代码开源! | 变工况下的域对抗图卷积网络故障诊断-CSDN博客

超强 !顶会创新融合!基于 2D-SWinTransformer 的并行分类网络-CSDN博客

多模态-故障诊断 | 大核卷积开启视觉新纪元!-CSDN博客

超强!一区直接写!基于SSA+Informer-SENet故障诊断模型-CSDN博客

Transformer结构优势 ,How Much Attention Do You Need?-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,使用特征提取KAN模型进行故障识,并通过CNN-SENet、MLP以及传统机器学习模型SVM进行对比分析。特征提取、KAN模型的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_凯斯西储大学轴承数据集-CSDN博客

独家首发 | 基于 KAN、KAN卷积的轴承故障诊断模型-CSDN博客

SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客

对比结果分析:

从对比实验可以看出, 在轴承故障诊断任务中:

故障信号经过特征提取后,KAN的准确率要优于CNN-SENet、 MLP以及传统机器学习模型SVM!

代码数据如下:

上述模型已经在如下两个代码合集里面更新,请购买过同学及时更新下载:

(1)KAN、KAN卷积,KAN、KAN卷积结合注意力机制

链接:

独家首发 | 基于 KAN、KAN卷积的轴承故障诊断模型-CSDN博客

(2)特征提取+机器学习模型、SHAP 模型可视化和参数搜索

链接:

SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客

1 数据集和特征提取

1.1 数据集导入

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

数据的读取形式以及预处理思路

1.2 故障信号特征提取

选择峭度、熵值、分形值、波形指标、频谱指标、频域指标、 统计特征、振动特征等13种指标来捕捉轴承信号的多尺度特征,作为机器学习模型的训练与识别。

2 基于 KAN 的故障诊断模型

2.1 定义KAN 模型

2.2 参数设置,模型训练

3 模型评估和可视化

3.1 模型分数、准确率、精确率、召回率、F1 Score

3.2 故障十分类混淆矩阵

3.3 t-SNE 特征可视化

(1)原始数据 t-SNE特征可视化

(2)模型训练后的 t-SNE特征可视化:

4 代码、数据整理如下:

点击下方卡片获取代码!


http://www.ppmy.cn/server/152357.html

相关文章

优先队列【东北大学oj数据结构9-3】C++

优先队列 优先级队列是一种数据结构,其中保存了一组数据 S,其中每个元素都有一个键,并执行以下操作: insert(S, k):将元素k插入集合S extractMax(S):从S中取出S中key最大的元素并返回其值 创建一个程序&am…

Vue.js前端框架教程3:Vue setup语法糖和异步操作

文章目录 script setup基本语法使用 Composition API组件定义使用生命周期钩子模板引用使用 defineProps 和 defineEmits组合多个 <script setup> 标签 Vue异步操作1. 使用 async 和 await2. 使用 Promise3. 在 created 或 mounted 钩子中执行异步操作4. 使用 watch 或 w…

24届FPGA秋招经验分享

学员客户&#xff1a;首先自我介绍一下&#xff0c;我本科就读于一所985高校&#xff0c;专业是电子信息工程&#xff0c;硕士阶段则专注于FPGA方向的研究。虽然有着相对扎实的理论基础&#xff0c;但在秋招过程中&#xff0c;我仍然遇到了不少挑战。以下是我结合自己的亲身经历…

单元测试使用记录

什么是单元测试 简单来说就是对一个类中的方法进行测试&#xff0c;对输出的结果检查判断是否符合预期结果 但是在多年的工作中&#xff0c;从来没有哪个项目中真正系统的用到了单元测试&#xff0c;因此对它还是很陌生的&#xff0c;也就造成更加不会在项目中区使用它。 如何…

深入解析 `DataFrame.groupby` 和 `agg` 的用法及使用场景

深入解析 DataFrame.groupby 和 agg 的用法及使用场景 1. groupby 的基本用法语法&#xff1a;示例&#xff1a; 2. agg 的基本用法语法&#xff1a;示例&#xff1a; 3. first、sum、lambda 的用法3.1 first示例&#xff1a; 3.2 sum示例&#xff1a; 3.3 lambda示例&#xff…

apache的常见报错

文章目录 一、httpd -k install -n Apache输入后&#xff0c;提示拒绝访问怎么办解决方案 二、命令行输入&#xff1a;httpd -t 报错解决方案 三、httpd -k install -n Apache输入后&#xff0c;另外一种报错解决方案测试是否成功 四、路径问题引起报错解决方案 一、httpd -k i…

STM32F407寄存器点灯

背景描述&#xff1a; 最近用32开发遇到问题不得不看寄存器了&#xff0c;就回顾了一下寄存器手册的查看方式和寄存器的使用方法&#xff1b; 上一次这么细致的记录还是在刚学习STM32的时候&#xff0c;之前觉得看寄存器手册以及配置寄存器是有点难度的事情&#xff0c;现在回头…

SEO初学者-搜索引擎如何工作

搜索引擎基础搜索引擎是如何建立索引的搜索引擎如何对网页进行排名搜索引擎是如何个性化搜索结果的 搜索引擎的工作方式是使用网络爬虫抓取数十亿个页面。爬虫也称为蜘蛛或机器人&#xff0c;它们在网络上导航并跟踪链接以查找新页面。然后&#xff0c;这些页面会被添加到搜索引…