pytorch框架下的逻辑回归代码解读

server/2024/11/9 17:08:54/
# -*- coding: utf-8 -*-
"""
# @file name  : lesson-05-Logsitic-Regression.py
# @author     : tingsongyu
# @date       : 2019-09-03 10:08:00
# @brief      : 逻辑回归模型训练
"""
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)# ============================ step 2/5 选择模型 逻辑回归模型 nn.module
============================
class LR(nn.Module):def __init__(self):super(LR, self).__init__()self.features = nn.Linear(2, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.features(x)x = self.sigmoid(x)return xlr_net = LR()   # 实例化逻辑回归模型# ============================ step 3/5 选择损失函数 二分类交叉熵函数 ============================
loss_fn = nn.BCELoss()# ============================ step 4/5 选择优化器  随机梯度下降法 ============================
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):# 前向传播y_pred = lr_net(train_x)# 计算 lossloss = loss_fn(y_pred.squeeze(), train_y)# 反向传播loss.backward()# 更新参数optimizer.step()# 清空梯度optimizer.zero_grad()# 绘图if iteration % 20 == 0:mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类correct = (mask == train_y).sum()  # 计算正确预测的样本个数acc = correct.item() / train_y.size(0)  # 计算分类准确率plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')w0, w1 = lr_net.features.weight[0]w0, w1 = float(w0.item()), float(w1.item())plot_b = float(lr_net.features.bias[0].item())plot_x = np.arange(-6, 6, 0.1)plot_y = (-w0 * plot_x - plot_b) / w1plt.xlim(-5, 7)plt.ylim(-7, 7)plt.plot(plot_x, plot_y)plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))plt.legend()plt.show()plt.pause(0.5)if acc > 0.99:break

注:代码过程分为数据,模型,损失函数,优化器以及迭代过程

数据:随机生成

模型:nn.Module来构建逻辑回归模型类

损失函数:二分类交叉熵函数

优化器:随机梯度下降法

迭代过程:前向传播,损失函数计算,反向传播,更新参数

迭代器中,设置了掩码,即误差小于0.5置为true,然后统计分类正确的个数,然后根据正确率达到0.99,结束流程


http://www.ppmy.cn/server/2766.html

相关文章

详解汽车交流充电桩主板的四大版本

近年来,在电动汽车行业快速发展背景下,充电桩的建设变得愈发重要,特别是兼容性较高、适用性较广的交流充电桩。 交流充电桩的心脏——主板的设计与功能,对于充电桩的性能和用户体验起着至关重要的作用。目前,市面上的…

股票价格预测 | Python使用GRU预测股票价格

文章目录 效果一览文章概述代码设计效果一览 文章概述 Python使用GRU预测股票价格 代码设计 import pandas as pd import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from numpy

Spring创建的对象是单例的还是多例的?还是原型的?

Spring创建的对象是单例的还是多例的?还是原型的? Spring创建的对象可以是单例的、多例的或者原型的,这取决于在配置文件或者注解中如何定义 Bean 的作用域。 单例(Singleton):当一个 Bean 被声明为单例时…

【MySQL面试题pro版-6】

MySQL是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的RDBMS (Relational Database Management System,关系数据…

基于SSM的购物小程序01

4.1系统架构设计 购物系统设计的系统项目的概述设计分析,主要内容有学习平台的具体分析,进行数据库的是设计,数据采用mysql数据库,并且对于系统的设计采用比较人性化的操作设计,对于系统出现的错误信息可以及时做出处…

Scala 04 —— 函数式编程底层逻辑

函数式编程 底层逻辑 该文章来自2023/1/14的清华大学交叉信息学院助理教授——袁洋演讲。 文章目录 函数式编程 底层逻辑函数式编程假如...副作用是必须的?函数的定义函数是数据的函数,不是数字的函数如何把业务逻辑做成纯函数式?函数式编程…

[大模型]Qwen-7B-Chat 接入langchain搭建知识库助手

Qwen-7B-Chat 接入langchain搭建知识库助手 环境准备 在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8 接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置…

【简单介绍下K-means聚类算法】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…