RNN(循环神经网络)详解

server/2024/12/3 1:55:11/

1️⃣ RNN介绍

前馈神经网络(CNN,全连接网络)的流程是前向传播、反向传播和参数更新,存在以下不足:

  • 无法处理时序数据:时序数据长度一般不固定,而前馈神经网络要求输入和输出的维度是固定的,不能改变
  • 缺少记忆:前馈神经网络没有机制去记忆和处理之前的输入数据,因此无法处理像语言、股票走势或天气预报等 序列化时间依赖性强的数据

针对前馈神经网络上述问题,RNN引入以下机制:

  • 不同时间步的隐藏层之间是相连的
  • 在时刻t,隐藏层的输入包括两部分,当前时刻的输入 x t x_t xt和上一个时间步隐藏层的输出 s t − 1 s_{t-1} st1

通过这两条机制,模型能够记忆之前的输入数据,捕捉序列的上下文信息

看完这几句话你一定在想,这说的是个啥?太晕了,没关系,慢慢往下看

多说一句,RNN在很久之前就提出了,Jordan RNN于1986被提出,Elman RNN于1990年提出。


2️⃣ 原理介绍

接下来,讲讲具体原理,解决一下上面的迷惑。看下面这张图,分析一下 o t o_t ot的表达式:
在这里插入图片描述

  • x t x_t xt是t时刻的输入
  • s t s_t st是t时刻的记忆, s t = f ( U ⋅ x t + W ⋅ s t − 1 ) s_t=f(U\cdot x_t+W\cdot s_{t-1}) st=f(Uxt+Wst1),f表示激活函数
  • o t o_t ot是t时刻的输出, o t = s o f t m a x ( V ⋅ s t ) o_t=softmax(V\cdot s_t) ot=softmax(Vst)

看完上面这张图,对于W是什么疑惑很大,我一开始学习的时候也是这样,W到底是啥呢?来看下面这张图:
在这里插入图片描述

看完这张图,对于W的描述一目了然。W是在不同的时间步 隐藏层之间递归的权重。在RNN中,不同时间步使用相同的W,为了保证信息能够传递下去。

其实这里还有一个疑惑,按照我之前的认知,神经网络可训练的参数w和b都是在神经元上的,例如下面这张图。那么问题来了,RNN隐藏层神经元上参数是啥样的呢?
在这里插入图片描述
虽然下面的左图是这样画的,搞得好像参数U,W,V“漂浮在空中一般”,实际上,它们都在神经元上。准确的来说应该是右图的形式,U和W都在隐藏层神经元上,V在输出层神经元上。所以之前理解的神经元是一个神经元上只有一种参数。对于RNN来说,隐藏层神经元上有两种参数U和W。终于搞懂了,爽!
在这里插入图片描述
分析完RNN中参数的具体含义,来看看参数的尺寸:
U = 隐藏层神经元个数 × 输入尺寸 W = 隐藏层神经元个数 × 隐藏层神经元个数 V = 输出尺寸 × 隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸\\ W=隐藏层神经元个数×隐藏层神经元个数\\ V=输出尺寸×隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸W=隐藏层神经元个数×隐藏层神经元个数V=输出尺寸×隐藏层神经元个数
这样最简单的RNN就分析完了。


3️⃣ 代码

接下来看一下最简单的代码:

import torch
import torch.nn as nn# 参数设置
input_size = 2    # 每个时间步的特征维度
hidden_size = 5   # 隐层神经元数量
num_layers = 1    # RNN层数
output_size = 3   # 假设输出的维度# RNN对象实例化
rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)# U:输入到隐藏状态的权重矩阵
U = rnn.weight_ih_l0  # 输入到隐藏状态的权重矩阵
print("矩阵 U 的大小 (输入到隐藏层):", U.shape)  # 应为 (hidden_size, input_size)# W:隐藏状态到隐藏状态的权重矩阵
W = rnn.weight_hh_l0  # 隐藏状态之间的递归权重矩阵
print("矩阵 W 的大小 (隐藏层到隐藏层):", W.shape)  # 应为 (hidden_size, hidden_size)# V:输出层权重矩阵
# 在 PyTorch 中没有直接实现,可以添加一个 Linear 层来模拟
V_layer = nn.Linear(hidden_size, output_size)  # 定义线性层
V = V_layer.weight  # V 就是隐藏状态到输出层的权重矩阵
print("矩阵 V 的大小 (隐藏层到输出层):", V.shape)  # 应为 (output_size, hidden_size)

输出:

矩阵 U 的大小 (输入到隐藏层): torch.Size([5, 2])
矩阵 W 的大小 (隐藏层到隐藏层): torch.Size([5, 5])
矩阵 V 的大小 (隐藏层到输出层): torch.Size([3, 5])

4️⃣ 总结

  • 标准的RNN存在梯度消失问题,无法捕捉长时间序列的关系。因此LSTM和GRU被提出

5️⃣ 参考

  • 深度学习-神经网络-循环神经网络(一):RNN(Recurrent Neural Network,循环神经网络;1990年)
  • 理解循环神经网络(RNN)

http://www.ppmy.cn/server/140553.html

相关文章

Pytorch基本语法

Pytorch Pytorch的基本使用基本使用张量的简介1.张量的基本类型2.张量的创建1).基本创建方式1.torch.tensor()根据指定数据创建张量2.torch.Tensor() 根据指定形状创建张量,也可以用来创建指定数据的张量3.torch.IntTensor()、torch.FloatTensor()、torch.DoubleTen…

30. 串联所有单词的子串

30. 串联所有单词的子串 题目思路对解题思路的概述具体实现 题目 原题: 串联所有单词的子串 思路 思路一:列出0到字符串数组长度的数字全排列,比如数组长度为3,则求出 012 021 102 120 201 210,然后遍历全排列求得的解&#xf…

使用EasyExcel实现excel导入

下文将简述在SpringBoot如何使用EasyExcel,从多sheet页&#xff0c;上万级数据excel导入到数据库中&#xff0c;本文使用mybatis作为ORM映射框架 准备环境 创建用户表users 创建用户实体对象级底层方法 userMapper.xml中定义批量增加方法 <insert id"batchSave&qu…

贪心算法day2(最长递增子序列)

目录 1.最长递增子序列 方法一&#xff1a;动态规划 方法二&#xff1a;贪心二分查找 1.最长递增子序列 链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 方法一&#xff1a;动态规划 思路&#xff1a;我们定义dp[i]为最长递增子序列&#xff0c;那么dp[j]就是…

Rust项目中的Labels

姊妹篇: Go项目中的Labels 按照issue数量从多到少排序: https://github.com/rust-lang/rust/labels?page2&sortcount-desc https://github.com/rust-lang/rust/labels/A-contributor-roadblock 第1页: 标签/中文说明数字T-compiler/编译器Relevant to the compiler tea…

笔记--(网络3)、交换机、VLAN

交换机 交换机&#xff08;Switch&#xff09;意为“开关”是一种用于电&#xff08;光&#xff09;信号转发的网络设备。它可以为接入交换机的任意两个网络节点提供独享的电信号通路。最常见的交换机是以太网交换机。其他常见的还有电话语音交换机、光纤交换机等。 交换机的…

virtualBox部署minikube+istio

环境准备 virtualBox安装 直接官网下载后安装即可&#xff0c;网上也有详细教程。镜像使用的centos7。 链接&#xff08;不保证还可用&#xff09;&#xff1a;http://big.dxiazaicc.com/bigfile/100/virtualbox_v6.1.26_downcc.com.zip?auth_key1730185635-pWBtV8LynsxPD0-0-…

[OpenGL]使用OpenGL实现硬阴影效果

一、简介 本文介绍了如何使用OpenGL实现硬阴影效果&#xff0c;并在最后给出了全部的代码。本文基于[OpenGL]渲染Shadow Map&#xff0c;实现硬阴影的流程如下&#xff1a; 首先&#xff0c;以光源为视角&#xff0c;渲染场景的深度图&#xff0c;将light space中的深度图存储…