人工智能中神经网络是如何进行学习的

server/2025/3/19 8:19:52/

在这里插入图片描述
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north
在这里插入图片描述

文章目录

    • 引言
    • 神经网络学习过程
    • 1. 前向传播
    • 2. 计算损失
    • 3. 反向传播
      • 反向传播的步骤
    • 4. 参数更新
    • 5. 重复迭代
    • 代码实现
    • 流程图
    • 总结
    • 参考文献

引言

神经网络学习过程是通过调整网络中的参数(权重和偏置)来最小化预测结果与真实值之间的误差。这一过程通常被称为训练,其核心是反向传播算法(Backpropagation)。本文将详细介绍神经网络学习过程,包括反向传播的原理、梯度下降优化方法,并通过代码和流程图帮助读者更好地理解。


神经网络学习过程

神经网络学习过程可以分为以下几个步骤:

  1. 前向传播:输入数据通过神经网络,得到预测结果。
  2. 计算损失:通过损失函数衡量预测结果与真实值之间的误差。
  3. 反向传播:计算损失函数对每个参数的梯度。
  4. 参数更新:使用梯度下降法更新网络的权重和偏置。
  5. 重复迭代:重复上述步骤,直到损失函数收敛或达到预定的训练次数。

下面我们将逐步展开这些步骤。


1. 前向传播

前向传播是神经网络预测的过程,输入数据从输入层经过隐藏层,最终到达输出层。具体过程如下:

  • 输入数据通过权重和偏置进行线性变换。
  • 对线性变换的结果应用激活函数,得到每一层的输出。
  • 最终输出层的输出即为预测结果。

关于前向传播的详细内容,可以参考上一篇博客《人工智能神经网络是如何进行预测的》。


2. 计算损失

损失函数(Loss Function)用于衡量预测结果与真实值之间的误差。常见的损失函数包括:

  • 均方误差(MSE):用于回归问题。
  • 交叉熵损失(Cross-Entropy Loss):用于分类问题。

假设我们有一个分类问题,使用交叉熵损失函数,其公式为:

在这里插入图片描述


3. 反向传播

反向传播是神经网络学习的核心。其目的是计算损失函数对每个参数的梯度,即损失函数对权重和偏置的偏导数。

反向传播的步骤

  1. 计算输出层的误差
    在这里插入图片描述

  2. 计算隐藏层的误差
    在这里插入图片描述

  3. 计算梯度
    在这里插入图片描述


4. 参数更新

通过梯度下降法更新网络的参数。梯度下降法的更新公式为:

在这里插入图片描述


5. 重复迭代

重复上述步骤,直到损失函数收敛或达到预定的训练次数。


代码实现

下面是一个简单的神经网络训练过程的Python实现,使用NumPy库进行矩阵运算。

import numpy as np# 定义激活函数及其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 定义神经网络
class NeuralNetwork:def __init__(self, input_size, hidden_size, output_size):self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_size# 初始化权重和偏置self.W1 = np.random.randn(self.input_size, self.hidden_size)self.b1 = np.zeros((1, self.hidden_size))self.W2 = np.random.randn(self.hidden_size, self.output_size)self.b2 = np.zeros((1, self.output_size))def forward(self, X):# 输入层到隐藏层self.z1 = np.dot(X, self.W1) + self.b1self.a1 = sigmoid(self.z1)# 隐藏层到输出层self.z2 = np.dot(self.a1, self.W2) + self.b2self.a2 = sigmoid(self.z2)return self.a2def backward(self, X, y, output, learning_rate):# 计算输出层的误差error = output - yd_output = error * sigmoid_derivative(output)# 计算隐藏层的误差error_hidden = np.dot(d_output, self.W2.T)d_hidden = error_hidden * sigmoid_derivative(self.a1)# 更新权重和偏置self.W2 -= np.dot(self.a1.T, d_output) * learning_rateself.b2 -= np.sum(d_output, axis=0, keepdims=True) * learning_rateself.W1 -= np.dot(X.T, d_hidden) * learning_rateself.b1 -= np.sum(d_hidden, axis=0, keepdims=True) * learning_ratedef train(self, X, y, epochs, learning_rate):for epoch in range(epochs):output = self.forward(X)self.backward(X, y, output, learning_rate)if epoch % 1000 == 0:loss = np.mean(np.square(y - output))print(f"Epoch {epoch}, Loss: {loss}")# 示例数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])# 创建神经网络并训练
nn = NeuralNetwork(input_size=2, hidden_size=4, output_size=1)
nn.train(X, y, epochs=10000, learning_rate=0.1)# 测试
output = nn.forward(X)
print("预测结果:", output)

流程图

以下是神经网络学习过程的流程图:

输入数据
前向传播
计算损失
反向传播
计算梯度
更新参数
是否收敛?
结束

总结

神经网络学习过程是通过前向传播、计算损失、反向传播和参数更新四个步骤不断迭代完成的。反向传播算法是神经网络学习的核心,它通过链式法则计算损失函数对每个参数的梯度,并使用梯度下降法更新参数。本文通过代码和流程图详细解释了这一过程,希望能帮助读者更好地理解神经网络学习机制。


参考文献

  1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  2. Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.
    在这里插入图片描述

http://www.ppmy.cn/server/176191.html

相关文章

宜宾数字园区:树莓集团布局的深远意义

树莓集团布局宜宾数字园区,是其深耕数字产业、拓展全国版图的重要一步,具有深远的战略意义。 产业带动效应 宜宾数字园区的建设,有效带动当地数字产业的集聚和发展。通过吸引软件开发、人工智能、大数据等领域的企业入驻,形成较…

在vuejs项目中使用momentjs获取今日、昨日、本周、下周、本月、上月、本季度、上季度、本年、去年等日期

项目场景: 使用了momentjs之后发现这个日期处理控件很强大很方便,参考下面的代码了解详细用法: 官网给出的几种情况(都是当前日期,若指定日期date, moment(date).format()) 使用代码: 项目中日期快捷选择&#xff1a…

《我的Python觉醒之路》之转型Python(十五)——控制流

[今天是2025年3月17日,继续复习第一章节、第二章节的内容 ] 《我的Python觉醒之路》之转型Python(十四)——控制流

第9章 项目管理概论(一)

9.2 项目基本要素 9.2.1项目基础 项目是为创造独特的产品、服务或成果而进行的临时性工作。 1.独特的产品、服务或成果 可交付成果是指在某一过程、阶段或项目完成时,形成的独特并可验证的产品成果或服务。(可能是有形的,也可能是无形的)。 2.临时性…

基于51单片机的手机拨号键盘模拟proteus仿真

地址: https://pan.baidu.com/s/1rB8GwWyyNnaIP3Kr4d2obw 提取码:1234 仿真图: 芯片/模块的特点: AT89C52/AT89C51简介: AT89C51 是一款常用的 8 位单片机,由 Atmel 公司(现已被 Microchip 收…

人形机器人领域的地位与应用前景分析

此博客主要分析科技迅速发展的今天宇树人形机器人突然爆火,普通科技创业者应该如何应对这样的冲击,如何把握这样的机会。 文章当中仅列举部分场景,还有极其多的应用方向等待开发者研究。 1. 宇树科技的行业地位 1.1 公司发展历程与技术优势…

破解“光伏+储能+充电”一体化难题!安科瑞全方案打造智慧能源新标杆

安科瑞顾强 破解“光伏储能充电”一体化难题!安科瑞全方案打造智慧能源新标杆 在“双碳”目标驱动下,光伏储能与充电桩的融合成为能源转型的关键场景。然而,多电源协同、保护逻辑冲突、运维可靠性低等难题,让许多充电站项目陷入…

计算机网络快速入门

计算机网络 TCP/IP四层模型四层模型的作用 应用层常见协议HTTP/HTTPSHTTP的常见字段Http和Https的区别HTTPS流程什么是数字证书客户端如何检验证书是否合法 HTTP/1.1、HTTP/2、HTTP/3 演变HTTP/1.1 相比 HTTP/1.0 提高了什么性能?HTTP/2 做了什么优化?HT…