源码:用Python进行电影数据分析实战指南

server/2025/3/9 18:19:08/

源码:用Python进行电影数据分析实战指南

原创 IT小本本 IT小本本 2025年03月03日 22:28 北京

接上一篇文章:用Python进行电影数据分析实战指南

1、首先复制csv内容到csv文件中

2、接着创建.py文件复制源码内容

3、运行代码,就可以看到数据分析图啦

图片

图片

源码内容:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns# 1. 加载数据
def load_data(file_path):"""从CSV文件加载电影数据集"""df = pd.read_csv(file_path)print("数据维度:", df.shape)print("\n前5行数据:")print(df.head())print("\n数据摘要:")print(df.info())return df# 2. 数据清洗
def clean_data(df):"""数据清洗预处理"""# 删除重复值df = df.drop_duplicates()# 处理缺失值df['rating'] = df['rating'].fillna(df['rating'].median())df = df.dropna(subset=['release_year', 'genre'])# 转换数据类型df['release_year'] = df['release_year'].astype(int)# 处理genre列(可能有多个类型)df['genre'] = df['genre'].str.split(',')return df# 3. 数据分析
def analyze_data(df):"""执行数据分析并生成可视化"""# 设置可视化风格sns.set(style="whitegrid")plt.figure(figsize=(12, 6))# 分析1:电影类型分布genre_counts = df.explode('genre')['genre'].value_counts().head(10)plt.subplot(2, 2, 1)genre_counts.plot(kind='bar', color='skyblue')plt.title('Top 10 Movie Genres')plt.xlabel('Genre')plt.ylabel('Count')# 分析2:评分分布plt.subplot(2, 2, 2)sns.histplot(df['rating'], bins=20, kde=True, color='orange')plt.title('Rating Distribution')plt.xlabel('IMDB Rating')# 分析3:年度电影数量趋势yearly_counts = df.groupby('release_year').size()plt.subplot(2, 2, 3)yearly_counts.plot(color='green')plt.title('Movies Released by Year')plt.xlabel('Year')plt.ylabel('Number of Movies')# 分析4:评分与时长关系plt.subplot(2, 2, 4)sns.scatterplot(x='runtime', y='rating', data=df, alpha=0.6)plt.title('Runtime vs Rating')plt.xlabel('Runtime (minutes)')plt.ylabel('Rating')plt.tight_layout()plt.show()# 高级分析:相关系数矩阵numeric_df = df.select_dtypes(include=['float64', 'int64'])plt.figure(figsize=(10, 8))sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')plt.title('Correlation Matrix')plt.show()# 主程序
if __name__ == "__main__":# 文件路径(需要替换为实际路径)file_path = "movies.csv"# 加载数据movie_df = load_data(file_path)# 数据清洗cleaned_df = clean_data(movie_df)# 数据分析analyze_data(cleaned_df)# 生成统计摘要print("\n统计摘要:")print(cleaned_df.describe())

csv内容:

title

rating

genre

release_year

runtime

votes

director

actors

Ne Zha: The Demon Boy Makes Havoc in the Sea

9.8

Animation 

2025

144

Jiaozi 

Product quite

5.1

Horror,Animation

1998

154

Wesley Weaver

Sheila Blackburn, Christina Harris, Jacob Odonnell

Choose support stuff

8

Action

1995

87

316631

Brian Vance, Karen Norris, Thomas West

Field itself growth

8.2

Thriller,Horror,Adventure

2007

163

398833

Daniel Kelly

Kenneth Jackson, Allen Campbell MD, Stacy Andersen

Task available president

6.7

Horror

2011

73

James Bishop, Rachel Williams, Cameron Wilson

Fly system event

8

Adventure

1997

178

290428

David Crawford

Randall Gonzalez, Larry Collins, Emily Sullivan

Evidence

9.4

Animation,Horror

1994

65

406310

Robert Lucas

Jeremiah Robinson, Megan Williams, Megan Herrera

Treat week

Comedy

2014

95

438314

Mitchell Dickson

Hailey Richardson, Nancy Davis, Cynthia Luna MD

Step staff

6

Comedy,Drama

2005

80

142530

Rebecca Wilson

Patrick Thompson, Amy Hernandez, Christopher King

Much such

7.8

Romance,Action,Horror

1992

163

141373

Kenneth Wang, April Avila, Adam Singleton

Wish water

7.8

Romance,Horror,Adventure

2015

173

241570

John Poole

Dr. Dennis Ryan, Vincent Valdez, John Rose

Two

8.7

Sci-Fi,Thriller,Documentary

2013

88

73525

Justin Turner

Andrew Coffey, Robin Jarvis, Daniel Murray

Someone song

Comedy

1999

140

Lisa Atkinson

James Brown, Cynthia Lopez, Jennifer Lopez

Culture quality

6.9

Adventure,Documentary,Sci-Fi

1990

147

358412

Michael Garrison

Robert Jenkins, Peter Combs, Charles Marsh DDS

Each listen and

8.8

Comedy,Sci-Fi

2017

80

379584

Michael Murphy

Rachel Reeves, David Matthews, Miss Dawn Hayes

Particular

7.5

Documentary

1996

171

442277

Rebecca Bryant DDS

Cody Cain, Dillon Powell, Kelsey Riley

Control lawyer

5.8

Documentary

2023

177

Chad Brown

Susan Morales, Michael Mann, Brian Hunter

Performance yourself then

Sci-Fi,Horror

1993

90

497474

Christopher Knapp, Edward Chapman PhD, Steven Richardson

Clearly

9.1

Drama,Animation,Adventure

2000

93

319029

Cynthia Harrison

Rodney Patterson, Shawn Wells, David Hill

Risk town

7.7

Horror,Sci-Fi,Thriller

2013

116

237708

Suzanne Smith

James Williams, Francisco Miller, Scott Herman

Once structure

6.7

Documentary,Horror,Animation

1990

69

31866

Mr. Jonathan Stafford

Pamela Johnson, John Rodriguez, Misty Wells

Condition morning

9.3

Documentary

2005

95

113321

Robert Jennings

James Williams, Antonio Zuniga, Adam Stewart

Lawyer almost method

9.4

Adventure,Horror,Animation

2016

84

Katherine Clark

Joshua Bernard, Jeffrey James, Cheryl Salinas

Central write

7.1

Action,Comedy,Animation

2015

153

452764

Joe Hernandez

Matthew Donaldson, Jennifer Kelley, Leslie Gomez

Apply window

7.7

Thriller

2001

95

459482

Logan Williams

Brooke Bruce, Danielle Dixon, Michael Burton

Trouble benefit another

9.3

Comedy,Action,Documentary

1995

178

124930

Christina Wood

Darren Jones, Brian Fischer, Paula Garcia

Represent career away

6.1

Action,Drama

2014

60

140042

Terri Melendez

Deanna Walker, Joseph Robinson, Mrs. Samantha Mccarthy

Product money

6.4

Documentary,Adventure,Drama

2002

97

31662

Paul Hale

Rachel Taylor, Lisa Hughes, Christopher Jordan

Standard campaign hot

8.7

Action

2020

124

279463

Evan Holmes

Madison Sanchez, Rachel Smith, Hannah Avery

Foreign care

5.4

Comedy

1994

146

212694

Alexander Morgan

Bill Doyle, Mary Garrison, Barbara Velazquez

Our of force

6.2

Action,Comedy,Thriller

2023

100

108090

Erica Mack

Cheryl Ray, Bobby Webster, Philip Mcdonald

Moment poor hour

6.3

Sci-Fi

2019

100

491594

Tyler Smith, Crystal Grimes, Amanda Watson

Science suffer human

10

Comedy

2003

124

490296

Nicole Evans

Karen Cook, Albert Tate, Teresa Watkins

Possible mission

Romance

2008

80

285802

Kyle Vasquez

Sonia Stanley, Dr. Olivia Sullivan, Tony Garcia

Factor difficult short

9.9

Documentary,Action,Sci-Fi

1996

180

139656

Terry Rogers

Felicia Dunn, Victor Spencer, Robert Mcdonald

Ready organization

7.8

Sci-Fi,Horror

2011

86

448171

Robert Green

Andrew Robinson, David Baker, Erik Jones

Right phone standard

9.5

Comedy

2017

166

2858

Kristin Montes

Thomas Martin, Amanda West, Patrick Travis

Start painting

9.9

Adventure

2017

131

Jesus Green, Robert Davis, Rebecca Davis

Whose member area

9.5

Action,Romance,Drama

2017

76

Mr. Martin Garcia

Tiffany Williams, Karen Ramirez, Lauren Matthews

Teach however

9.9

Romance

2003

147

54893

Melvin Medina

Shannon Bell, Jeffrey Hoffman, Samantha Walton

Within response one book

9.4

Drama,Horror,Animation

2001

172

95036

Latoya Petersen

Christina Pearson, Shawn Hart, Joseph Moore

Nation south debate

9.7

Horror,Sci-Fi,Drama

1996

108

451150

Paul Clark

Darrell Neal, Patrick Durham, Nathan Freeman

Method town firm

9.6

Sci-Fi,Horror

2004

63

209910

John King

Renee Williams, James Hunter, Lindsey Buchanan

Produce movie

9.8

Romance,Documentary

2015

146

282131

Daniel Diaz

Ashley Lara, Dustin Pearson, John Franklin

Best across

Drama,Sci-Fi

1992

73

182239

Debra Calderon

Deborah Hunter DVM, Peter Phillips, Donna Wright

Pass crime

8

Comedy,Thriller,Horror

2006

65

1886

Yolanda Baxter

Adam Hood, Edwin Henderson, Stephen Anderson

Move

8.4

Horror,Romance,Thriller

1994

145

327712

Roy Schwartz

Joann Fleming, Maria Simpson, John Mason

Where cause idea

8.6

Documentary,Sci-Fi

2016

101

156008

Wesley Turner

Dr. Carol Diaz, Daniel Santana, Tina White

Water concern

8.3

Drama,Sci-Fi

2015

130

160317

Nicole Martin

Corey Sanders, Rebecca Tran, Kari Mason

Degree you

7.9

Romance,Adventure,Documentary

2018

146

249085

Nicholas Lawson

Brian Robbins, Charles Schwartz, Shawn Ramos

Wonder firm pull

8.7

Comedy,Sci-Fi,Romance

1995

164

124138

Kelly Thomas

Holly Stark, Susan Bishop, Adam Perez

创作不易,从构思到成品,饱含我创作的热忱,希望大家尊重原创,拒绝抄袭、盗用!


http://www.ppmy.cn/server/173726.html

相关文章

如何搭建个人静态住宅IP:从零开始

你好!今天我们将一起探索如何从头开始搭建个人静态住宅IP。无论您是为了远程办公、在线教育还是游戏加速,静态住宅IP都能带给您更稳定的网络体验。 一、准备阶段 1. 明确需求 首先,您需要清楚自己为什么需要静态住宅IP。可能是为了实现远程…

ZT39 小红的取模构造

描述 小红拿到了两个整数 a 和 b 。她希望你构造两个正整数 x 和 y 满足: 1、x mod ya 2、y mod xb 其中 p mod q 代表 p 除以 q 得到的余数。 共有t组询问。 输入描述: 第一行输入一个正整数t,代表询问的次数。 接下来的t行,每行…

IPD(集成产品开发)简介

参考:IPD咨询_研发管理咨询_IPD集成产品开发-百思特管理咨询集团 一、什么是IPD IPD到底是什么?一套体系?一些流程?还是一种模式? 华为在整个企业内部改革中最重要的两个项目一个是ISC(集成供应链),另外…

计算机毕业设计SpringBoot+Vue.js车辆管理系统(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

爬虫代理技术深度解析:从原理到实战应用

一、代理IP的核心价值 ‌突破访问限制‌ 通过代理IP轮换机制,可有效绕过目标网站的IP频率限制与地域访问控制‌。实测数据显示,使用代理IP的爬虫成功率比直接访问提升3-5倍‌。 ‌提升数据采集效率‌ 采用分布式代理池技术,可实现每秒处理20…

网络编程-----服务器(多路复用IO 和 TCP并发模型)

一、单循环服务器模型 1. 核心特征 while(1){newfd accept();recv();close(newfd);}2. 典型应用场景 HTTP短连接服务&#xff08;早期Apache&#xff09;CGI快速处理简单测试服务器 3. 综合代码 #include <stdio.h> #include <sys/types.h> /* See NO…

深入理解人脸特征向量及图片转换方法与开发架构

在当今数字化时代&#xff0c;人脸识别技术已经广泛应用于各个领域&#xff0c;如安防监控、门禁系统、手机解锁等。而人脸特征向量作为人脸识别技术的核心概念&#xff0c;对于理解和实现人脸识别起着至关重要的作用。本文将详细介绍人脸特征向量是什么&#xff0c;以及如何将…

MoonSharp 文档一

目录 1.Getting Started 步骤1&#xff1a;在 IDE 中引入 MoonSharp 步骤2&#xff1a;引入命名空间 步骤3&#xff1a;调用脚本 步骤4&#xff1a;运行代码 2.Keeping a Script around 步骤1&#xff1a;复现前教程所有操作 步骤2&#xff1a;改为创建Script对象 步骤…