嵌入式硬件篇---CPUGPUTPU

server/2025/2/3 4:16:01/

文章目录

  • 第一部分:处理器
    • CPU(中央处理器)
      • 1.通用性
      • 2.核心数
      • 3.缓存
      • 4.指令集
      • 5.功耗和发热
    • GPU(图形处理器)
      • 1.并行处理
      • 2.核心数量
      • 3.内存带宽
      • 4.专门的应用
    • TPU(张量处理单元)
      • 1.为深度学习定制
      • 2.低精度计算
      • 3.固定的功能
      • 4.内存和存储
    • 总结
  • 第二部分:在Google Colab中使用TPU
    • 启动TPU支持
    • 安装TensorFlow with TPU支持
    • 初始化TPU
    • 编写模型和数据加载代码
    • 在Google Cloud TPU中使用TPU
      • 创建TPU资源
      • 设置环境
      • 安装TensorFlow
      • 连接TPU
    • 编写并运行代码
  • 第三部分:TPU处理数据
    • 1. 使用tf.data API
      • a. 创建数据集
      • b. 预处理数据
      • c. 批处理和预取
    • 2. 使用TPU分布式策略
    • 3. 使用交错读取(Interleave)
    • 4. 使用缓存
    • 5. 使用重复数据集
    • 6. 使用优化器
  • 总结


以上就是今天要讲的内容,本文仅仅介绍了CPUGPUTPU


第一部分:处理器

CPU_15">CPU(中央处理器)

CPU,即Central Processing Unit,是计算机的核心组件,负责执行计算机程序中的指令,处理数据,控制硬件。以下是CPU的一些特点:

1.通用性

通用性:CPU设计为能够处理各种不同的任务,从简单的计算到复杂的逻辑操作

2.核心数

核心数:现代CPU通常有多个核心,可以并行处理多个任务

3.缓存

缓存:CPU内部有不同级别的缓存,用于快速访问常用数据

4.指令集

指令集:CPU支持复杂的指令集,可以执行多种类型的操作

5.功耗和发热

功耗和发热:CPU执行复杂任务时功耗较高,发热也相对较大

GPU_28">GPU(图形处理器)

GPU,即Graphics Processing Unit,最初是为图形渲染设计的,但现在在科学计算、机器学习等领域也广泛应用

1.并行处理

并行处理:GPU包含大量的计算单元,擅长并行处理任务,如同时处理成千上万的像素数据。

2.核心数量

核心数量:GPU核心数量远超CPU,但每个核心相对简单,适合执行简单的重复任务

3.内存带宽

内存带宽:GPU通常具有高内存带宽,以支持大量的数据传输。

4.专门的应用

专门的应用:除了图形渲染GPU深度学习其他需要大规模并行计算的场景中表现出色。

TPU_39">TPU(张量处理单元)

TPU,即Tensor Processing Unit,是Google专门为深度学习计算设计的ASIC(Application-Specific Integrated Circuit)。

1.为深度学习定制

为深度学习定制:TPU针对深度学习中的矩阵乘法和卷积运算进行了优化。

2.低精度计算

低精度计算:TPU在**低精度(如16位或8位)**计算上表现出色,这有助于提高能效和速度。

3.固定的功能

固定的功能:与CPUGPU的通用性不同,TPU的功能更固定,专注于加速深度学习推断和训练

4.内存和存储

内存和存储:TPU具有大量的内存和存储,以支持大规模的神经网络计算。

总结

CPU:适用于通用计算,能够处理各种复杂的任务和指令
GPU:适用于需要大量并行处理的任务,如图形渲染和深度学习
TPU:专门为深度学习设计,提供了针对特定类型计算的优化
这三种处理器在现代计算系统中通常协同工作,以提供最佳的性能和效率。

TPU_57">第二部分:在Google Colab中使用TPU

TPU_58">启动TPU支持

启用TPU支持: 在Google Colab笔记本中,首先需要确保TPU已经连接。可以使用以下命令来连接TPU

import os
assert os.environ['COLAB_TPU_ADDR'], 'Make sure to select TPU from Edit > Notebook settings > Hardware accelerator'

TPU_65">安装TensorFlow with TPU支持

安装TensorFlow with TPU支持: 使用以下命令安装与TPU兼容的TensorFlow版本

!pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.7-cp36-cp36m-linux_x86_64.whl

TPU_71">初始化TPU

初始化TPU: 使用以下代码来初始化TPU

import torch_xla
import torch_xla.core.xla_model as xmdevice = xm.xla_device()

编写模型和数据加载代码

编写模型和数据加载代码: 与使用GPU类似,你需要编写模型定义、损失函数、优化器以及数据加载的代码。确保模型和数据被移动到TPU设备上。
训练模型: 在训练循环中,确保使用TPU兼容的方式来进行前向和后向传播。例如:

model = MyModel().to(device)
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)for epoch in range(num_epochs):for batch, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = loss_fn(output, target)loss.backward()optimizer.step()

TPUTPU_100">在Google Cloud TPU中使用TPU

TPU_101">创建TPU资源

创建TPU资源: 在Google Cloud Console中创建一个TPU节点。

设置环境

设置环境: 在你的虚拟机中设置TPU相关的环境变量,例如:

export TPU_NAME=[your-tpu-name]
export TPU_ZONE=[your-tpu-zone]
export TPU_PROJECT=[your-gcp-project-id]

安装TensorFlow

安装TensorFlow: 确保安装了与TPU兼容的TensorFlow版本:

pip install tensorflow==[version]

TPU_117">连接TPU

连接到TPU: 在你的Python代码中,使用以下代码来连接到TPU

import tensorflow as tftpu = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)

编写并运行代码

编写并运行模型: 使用strategy.scope()来确保你的模型和训练代码在TPU上运行:

with strategy.scope():# Define your model, loss, and optimizermodel = ...loss_fn = ...optimizer = ...# Train your modelfor epoch in range(num_epochs):for batch in train_dataset:# Training steps

请注意,TPU的使用可能需要一些特定的代码调整,以确保你的模型和数据管道与TPU兼容。在使用TPU时,还需要注意资源管理和成本控制

TPU_146">第三部分:TPU处理数据

1. 使用tf.data API

TensorFlow的tf.data API可以高效地加载、预处理和批处理数据

a. 创建数据集

import tensorflow as tf

#假设train_images和train_labels是已经加载的数据

train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))

b. 预处理数据

def preprocess(image, label):# 对图像和标签进行预处理image = tf.image.resize(image, [224, 224])image = tf.cast(image, tf.float32) / 255.0return image, labeltrain_dataset = train_dataset.map(preprocess)

c. 批处理和预取

train_dataset = train_dataset.batch(128)  # TPU通常使用较大的批量大小
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

TPU_183">2. 使用TPU分布式策略

当使用TPU时,应确保数据集与TPU的分布式策略兼容。

resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)

#使用策略的scope来创建模型和数据集

with strategy.scope():train_dataset = strategy.experimental_distribute_dataset(train_dataset)

3. 使用交错读取(Interleave)

交错读取可以同时从多个文件中读取数据,这可以显著提高I/O效率。

def parse_function(proto):# 解析TFRecord文件中的示例return tf.io.parse_single_example(proto, features)#假设file_pattern是TFRecord文件的通配符
files = tf.data.Dataset.list_files(file_pattern)
dataset = files.interleave(lambda filename: tf.data.TFRecordDataset(filename).map(parse_function),cycle_length=4,  # 并行读取的文件数block_length=16  # 每个文件读取的记录数

)

4. 使用缓存

如果数据集可以放入内存,可以在预处理后缓存数据集,以避免在每次epoch时重新读取数据。

train_dataset = train_dataset.cache()

5. 使用重复数据集

为了进行多次迭代,可以使用repeat方法。

train_dataset = train_dataset.repeat()

6. 使用优化器

使用tf.data API的优化器来自动调整数据加载的性能。

options = tf.data.Options()
options.experimental_optimization.autotune = True
train_dataset = train_dataset.with_options(options)

总结
TPU上训练时,数据处理的关键是确保数据加载和预处理不会成为瓶颈。使用tf.data API的上述技术可以帮助你有效地利用TPU的计算能力,从而加速模型的训练过程。记住,批量大小、数据预处理和I/O操作都是需要根据具体情况调整的重要参数。


总结

以上就是今天要讲的内容,本文仅仅简单介绍了CPUGPUTPU


http://www.ppmy.cn/server/164516.html

相关文章

【AI】DeepSeek 概念/影响/使用/部署

在大年三十那天,不知道你是否留意到,“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注,出于学习的兴趣,我深入研究了一番,才有了这篇文章的诞生。 概念 那么,什么是DeepSeek?首先百…

基于深度学习的输电线路缺陷检测算法研究(论文+源码)

输电线路关键部件的缺陷检测对于电网安全运行至关重要,传统方法存在效率低、准确性不高等问题。本研究探讨了利用深度学习技术进行输电线路关键组件的缺陷检测,目的是提升检测的效率与准确度。选用了YOLOv8模型作为基础,并通过加入CA注意力机…

第三章 人工智能和机器学习

如果将语谱图看作一张图片,就相当于把语音识别的问题变成图片分类问题。这样利用网络上大量的语料库,我们就可以训练一个机器学习模型,构建自己的语音识别体系。 本章我们将尝试利用自己录入的语音数据来完成一个简单的短语识别程序&#xf…

傅里叶分析之掐死教程

https://zhuanlan.zhihu.com/p/19763358 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析 不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多…

知识图谱中如何做种子对齐?

知识图谱手动对齐中的种子对齐(Seed Alignment)是知识图谱实体对齐(Entity Alignment, EA)任务中的关键步骤,其目的是通过预先定义的一组已知匹配的实体或关系对(即种子对),为后续的…

FortiOS 存在身份验证绕过导致命令执行漏洞(CVE-2024-55591)

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…

webview_flutter_wkwebview3.17.0 --Cookie认证

场景描述: flutter app 中,也就是使用flutter框架搭建的移动app,已经设置了用户登录。 那么使用flutter webview html 页面时,也可以通过本地的登录信息来进行这个html页面的登录。 webview 就是通过模拟浏览器的方式来在应用中打开html页面。 使用移动a…

【LLM-agent】(task2)用llama-index搭建AI Agent

note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool,循环执行:推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词,工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…