note
- LlamaIndex 实现 Agent 需要导入
ReActAgent
和Function Tool
,循环执行:推理、行动、观察、优化推理、重复进行。可以在arize_phoenix
中看到 agent 的具体提示词,工具被装换成了提示词 - ReActAgent 使得业务自动向代码转换成为可能,只要有 API 模型就可以调用,很多业务场景都适用,LlamaIndex 提供了一些开源的工具实现,可以到官网查看。
- 虽然 Agent 可以实现业务功能, 但是一个 Agent 不能完成所有的功能,这也符合软件解耦的设计原则,不同的 Agent 可以完成不同的任务,各司其职,Agent 之间可以进行交互、通信,类似于微服务。
文章目录
- note
- 一、LlamaIndex中agent的构建
- 二、代码实践
- Reference
agent_8">一、LlamaIndex中agent的构建
步骤:
- 定义工具函数(大模型会根据函数的注释来判断使用哪个函数来完成任务)
- 把工具函数放入FunctionTool对象中,供Agent能够使用
- LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool
一个典型的 ReActAgent 遵循以下循环:
- 初始推理:代理首先进行推理步骤,以理解任务、收集相关信息并决定下一步行为。
- 行动:代理基于其推理采取行动——例如查询API、检索数据或执行命令。
- 观察:代理观察行动的结果并收集任何新的信息。
- 优化推理:利用新信息,代理再次进行推理,更新其理解、计划或假设。
- 重复:代理重复该循环,在推理和行动之间交替,直到达到满意的结论或完成任务。
二、代码实践
import os
from dotenv import load_dotenv# 加载环境变量
load_dotenv()
# 初始化变量
base_url = None
chat_model = None
api_key = None# 使用with语句打开文件,确保文件使用完毕后自动关闭
env_path = "/Users/guomiansheng/Desktop/LLM/llm_app/wow-agent/.env.txt"
with open(env_path, 'r') as file:# 逐行读取文件for line in file:# 移除字符串头尾的空白字符(包括'\n')line = line.strip()# 检查并解析变量if "base_url" in line:base_url = line.split('=', 1)[1].strip().strip('"')elif "chat_model" in line:chat_model = line.split('=', 1)[1].strip().strip('"')elif "ZHIPU_API_KEY" in line:api_key = line.split('=', 1)[1].strip().strip('"')# 打印变量以验证
print(f"base_url: {base_url}")
print(f"chat_model: {chat_model}")
print(f"ZHIPU_API_KEY: {api_key}")from openai import OpenAI
client = OpenAI(api_key = api_key,base_url = base_url
)
print(client)def get_completion(prompt):response = client.chat.completions.create(model="glm-4-flash", # 填写需要调用的模型名称messages=[{"role": "user", "content": prompt},],)return response.choices[0].message.content# 用llama-index
from openai import OpenAI
from pydantic import Field # 导入Field,用于Pydantic模型中定义字段的元数据
from llama_index.core.llms import (CustomLLM,CompletionResponse,LLMMetadata,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import List, Any, Generator# 定义OurLLM类,继承自CustomLLM基类
class OurLLM(CustomLLM):api_key: str = Field(default=api_key)base_url: str = Field(default=base_url)model_name: str = Field(default=chat_model)client: OpenAI = Field(default=None, exclude=True) # 显式声明 client 字段def __init__(self, api_key: str, base_url: str, model_name: str = chat_model, **data: Any):super().__init__(**data)self.api_key = api_keyself.base_url = base_urlself.model_name = model_nameself.client = OpenAI(api_key=self.api_key, base_url=self.base_url) # 使用传入的api_key和base_url初始化 client 实例@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""return LLMMetadata(model_name=self.model_name,)@llm_completion_callback()def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:response = self.client.chat.completions.create(model=self.model_name, messages=[{"role": "user", "content": prompt}])if hasattr(response, 'choices') and len(response.choices) > 0:response_text = response.choices[0].message.contentreturn CompletionResponse(text=response_text)else:raise Exception(f"Unexpected response format: {response}")@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> Generator[CompletionResponse, None, None]:response = self.client.chat.completions.create(model=self.model_name,messages=[{"role": "user", "content": prompt}],stream=True)try:for chunk in response:chunk_message = chunk.choices[0].deltaif not chunk_message.content:continuecontent = chunk_message.contentyield CompletionResponse(text=content, delta=content)except Exception as e:raise Exception(f"Unexpected response format: {e}")llm = OurLLM(api_key=api_key, base_url=base_url, model_name=chat_model)
# print(llm)
# 测试模型是否能正常回答
response = llm.stream_complete("你是谁?")
for chunk in response:print(chunk, end="", flush=True)import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..")))
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTooldef multiply(a: float, b: float) -> float:"""Multiply two numbers and returns the product"""return a * bdef add(a: float, b: float) -> float:"""Add two numbers and returns the sum"""return a + b# 定义个类似天气预报的function
def get_weather(city: str) -> int:"""Gets the weather temperature of a specified city.Args:city (str): The name or abbreviation of the city.Returns:int: The temperature of the city. Returns 20 for 'NY' (New York),30 for 'BJ' (Beijing), and -1 for unknown cities."""# Convert the input city to uppercase to handle case-insensitive comparisonscity = city.upper()# Check if the city is New York ('NY')if city == "NY":return 20 # Return 20°C for New York# Check if the city is Beijing ('BJ')elif city == "BJ":return 30 # Return 30°C for Beijing# If the city is neither 'NY' nor 'BJ', return -1 to indicate unknown cityelse:return -1def main():multiply_tool = FunctionTool.from_defaults(fn=multiply)add_tool = FunctionTool.from_defaults(fn=add)# 创建ReActAgent实例agent = ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True)response = agent.chat("20+(2*4)等于多少?使用工具计算每一步")print(f"第一个agent的结果: ", response, "\n")weather_tool = FunctionTool.from_defaults(fn=get_weather)agent = ReActAgent.from_tools([multiply_tool, add_tool, weather_tool], llm=llm, verbose=True)response = agent.chat("纽约天气怎么样?")print(f"第二个agent的结果: ", response)if __name__ == "__main__":main()
输出的结果:
(1)计算的例子:
- 将提问中的计算步骤分别利用了我们自定义的函数 add 和 multiply,比task1只能控制prompt情况更加自由了
(2)天气预报的例子
- 可以在
arize_phoenix
中看到 agent 的具体提示词,工具被装换成了提示词 - ReActAgent 使得业务自动向代码转换成为可能,只要有 API 模型就可以调用,很多业务场景都适用,LlamaIndex 提供了一些开源的工具实现,可以到官网查看。
- 虽然 Agent 可以实现业务功能, 但是一个 Agent 不能完成所有的功能,这也符合软件解耦的设计原则,不同的 Agent 可以完成不同的任务,各司其职,Agent 之间可以进行交互、通信,类似于微服务。
Reference
[1] 官方文档:https://docs.cloud.llamaindex.ai/
[2] https://github.com/datawhalechina/wow-agent
[3] https://www.datawhale.cn/learn/summary/86