图像点处理

server/2025/1/24 13:09:43/

怎么理解灰度图?

RGB很明显有三个通道
我们看红色通道,因为天空中红色含量(R值)最少,因此红色通道中的天空最暗,而因为建筑红色含量(R值)最高,所以红色通道中的建筑最亮。

怎么理解灰度分布图

x轴为灰度值。表示0~255
y轴为像素数量(频率),表示图像中具有特定灰度值的像素数量。

灰度分布图常见典型特征:

(1)平坦分布:

如果灰度直方图在所有灰度值上分布比较均匀(即y轴值变化不大),说明对比度低。

(2)高峰集中在某一部分:

如果高峰集中在低灰度值区域(靠近0),说明图像偏暗。

如果高峰集中在高灰度值区域(靠近255),说明图像整体偏亮。

(3)双峰分布:

如果灰度直方图有两个明显的峰值,可能表示图像中存在两种主要的灰度区域(例如,背景和目标物体。

灰度分布图的应用:

图像增强:通过调整灰度分布(如直方图均衡化),可以改善图像的对比度和视觉效果。

图像分割:通过分析灰度分布的峰值和谷值,可以确定合适的阈值,用于分割图像中的不同区域。

图像校正:通过观察灰度分布,可以判断图像是否过暗或过亮,并采取相应的校正措施(如伽马变换)

图像点处理定义:

图像点处理是一种对每个像素单独进行操作的处理方式。点处理的核心在于直接对像素的灰度值或颜色值进行变换,而不依赖于像素周围的邻域信息。这种处理方式的特点是像素之间的处理相互独立,因此非常适合并行计算,例如利用GPU加速。

图像点处理可以分为线性点运算和非线性点运算:

线性点运算:

通过线性函数s=ar + b实现,其中r是输入像素值,s是输出像素值,a和b是常数。这种运算可以用于调整图像的亮度和对比度。

非线性点运算:

(1)指数点运算

作用:拓展图像的高灰度级,压缩图像的低灰度级。

(2)对数点运算

作用:扩展图像的低灰度级,压缩图像的高灰度级

(3)对数变换

常用于图像处理中以增强图像的暗部细节。

其基本公式为: s = c log(1 + r)

其中,r 是输入图像的灰度值,s 是输出图像的灰度值,c 是一个常数,用于调整变换后的灰度值范围。

(4)伽马变换

常用于调整图像的对比度和亮度。其基本公式为: s = c × r^γ
其中,r 是输入灰度值,s 是输出灰度值,cγ 是正常数。

γ < 1 时,伽马变换会拉伸低灰度值区域,压缩高灰度值区域,使图像的暗部更亮

γ > 1 时,伽马变换会拉伸高灰度值区域,压缩低灰度值区域,使图像的亮部更亮


http://www.ppmy.cn/server/161024.html

相关文章

数据分析 six库

目录 起因 什么是six库 智能识别py2或3 ​编辑 起因 ModuleNotFoundError: No module named sklearn.externals.six sklearn.externals.six 模块在较新版本的 scikit-learn 中已经被移除。如果你在尝试使用这个模块时遇到了 ModuleNotFoundError: No module named sklear…

FPGA产业全景扫描

随着芯片种类日益丰富、功能日益强大&#xff0c;人们不禁好奇&#xff1a;一块FPGA是如何从最初的概念一步步呈现在我们面前的&#xff1f; FPGA设计、FPGA原型验证/仿真、FPGA板级调试和应用&#xff0c;是FPGA从概念到应用的必经之路。本文将围绕这几个核心环节&#xff0c…

Pytorch - YOLOv11自定义资料训练

►前言 本篇将讲解目前最新推出的YOLOv11搭配Roboflow进行自定义资料标注训练流程&#xff0c;透过Colab上进行实作说明&#xff0c;使大家能够容易的了解YOLOv11的使用。 ►YOLO框架下载与导入 ►Roboflow的资料收集与标注 进行自定义资料集建置与上传 透过Roboflow工具进行…

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析 目录 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析1. 引言2. 蚁群算法 (ACO) 算法原理2.1 蚂蚁觅食行为2.2 算法步骤2.3 数学公式3. 蚁群算法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案例1: 旅行商…

数据结构-二叉树

树的相关概念&#xff1a; 1、节点的度&#xff1a;树中一个节点的孩子个数称为该节点的度&#xff0c; 所有节点的度的最大值是树的度 2、分支节点&#xff1a;度大于0的节点称为分支节点 3、叶子结点&#xff1a;度为0的节点称为叶子结点 4、节点的层次&#xff08;深度&…

Javaweb之css

css的三种引入方式 1内行式 2.内嵌式 3.外部样式表 内行式和内嵌式 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&quo…

OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…

2025发文新方向:AI+量化 人工智能与金融完美融合!

2025深度学习发论文&模型涨点之——AI量化 人工智能的融入&#xff0c;使量化交易实现了质的突破。借助机器学习、深度学习等先进技术&#xff0c;人工智能可高效处理并剖析海量市场数据&#xff0c;挖掘出数据背后错综复杂的模式与趋势&#xff0c;从而不仅提升了数据分析…