Pytorch - YOLOv11自定义资料训练

server/2025/1/24 12:53:57/

►前言

本篇将讲解目前最新推出的YOLOv11搭配Roboflow进行自定义资料标注训练流程,透过Colab上进行实作说明,使大家能够容易的了解YOLOv11的使用。

►YOLO框架下载与导入

YOLO框架下载与导入

YOLO框架下载与导入

►Roboflow的资料收集与标注

Roboflow的资料收集与标注

进行自定义资料集建置与上传

进行自定义资料集建置与上传

进行自定义资料集建置与上传

透过Roboflow工具进行资料标注,最后再将训练资料采用YOLOv11格式输出。

透过Roboflow工具进行资料标注,最后再将训练资料采用YOLOv11格式输出

透过Roboflow工具进行资料标注,最后再将训练资料采用YOLOv11格式输出

透过Roboflow工具进行资料标注,最后再将训练资料采用YOLOv11格式输出

透过Roboflow工具进行资料标注,最后再将训练资料采用YOLOv11格式输出

►自定义资料导入

自定义资料导入

►模型训练

模型训练

►模型训练结果可视化

模型训练结果可视化

模型训练结果可视化

模型训练结果可视化

►模型训练结果可视化

模型训练结果可视化

►小结

透过以上讲解,在Colab上搭配Roboflow进行自定义资料收集与训练,能够更快的进行YOLOv11的模型训练,可以期待下一篇博文吧!

►Q&A

Q1: YOLOv11 有哪些新特性?:

A1: 透过GPU最佳化和架构改进,YOLOv11的训练和推理速度比以往版本快得多,延迟减少高达25%。

Q2:YOLOv11包含哪些模型?

A2: 目标检测模型、实例分割模型、姿态估计模型、旋转边界框模型、影像分类模型。

Q3 : YOLOv8 vs YOLOv11:模型效能比较?

A3:YOLOv11n 在精确度上超越了 YOLOv8n,平均精确度(mAP)为 39.5,而 YOLOv8n 为 37.3,显示 YOLOv11n 在影像中的目标侦测能力更强。

Q4: YOLOv11 是否能够于嵌入端使用?

A4:目前已能够透过tensorRT、 NCNN或TFLite,于嵌入端使用。

Q5: NCNN与tensorRT差异?

A5: NCNN针对CPU效能进行部署与最佳化,记忆体占用率低,提供INT8量化支援。TensorRT针对GPU和CPU优化加速模型推理,支援INT8量化和FP16量化。对于嵌入端提供Nvidia GPU可以透过TensorRT进行加速。

点击此处登录大大通,精彩技术内容吧!


http://www.ppmy.cn/server/161021.html

相关文章

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析 目录 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析1. 引言2. 蚁群算法 (ACO) 算法原理2.1 蚂蚁觅食行为2.2 算法步骤2.3 数学公式3. 蚁群算法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案例1: 旅行商…

数据结构-二叉树

树的相关概念: 1、节点的度:树中一个节点的孩子个数称为该节点的度, 所有节点的度的最大值是树的度 2、分支节点:度大于0的节点称为分支节点 3、叶子结点:度为0的节点称为叶子结点 4、节点的层次(深度&…

Javaweb之css

css的三种引入方式 1内行式 2.内嵌式 3.外部样式表 内行式和内嵌式 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&quo…

OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…

2025发文新方向:AI+量化 人工智能与金融完美融合!

2025深度学习发论文&模型涨点之——AI量化 人工智能的融入&#xff0c;使量化交易实现了质的突破。借助机器学习、深度学习等先进技术&#xff0c;人工智能可高效处理并剖析海量市场数据&#xff0c;挖掘出数据背后错综复杂的模式与趋势&#xff0c;从而不仅提升了数据分析…

汇编实验·循环程序设计

一、实验目的: 1.掌握汇编语言循环程序编写的基本方法。 2.理解高级语言中的循环的实现方式。 3.理解循环程序对性能的一些影响因素。 二、实验内容 1.C语言函数void*memset(void*s,intch,size_tn);是将s中当前位置后面的n个字节用ch替换,通常用于在一段内存块中填充某个…

nuxt3项目打包部署到服务器后配置端口号和开启https

nuxt3打包后的项目部署相对于一般vite打包的静态文件部署要稍微麻烦一些&#xff0c;还有一个主要的问题是开发环境配置的.env环境变量在打包后部署时获取不到&#xff0c;具体的解决方案可以参考我之前文章 nuxt3项目打包后获取.env设置的环境变量无效的解决办法。 这里使用的…

智能化加速标准和协议的更新并推动验证IP(VIP)在芯片设计中的更广泛应用

作者&#xff1a;Karthik Gopal, SmartDV Technologies亚洲区总经理 智权半导体科技&#xff08;厦门&#xff09;有限公司总经理 随着AI技术向边缘和端侧设备广泛渗透&#xff0c;芯片设计师不仅需要考虑在其设计中引入加速器&#xff0c;也在考虑采用速度更快和带宽更高的总…