YOLO11改进-注意力-引入自调制特征聚合模块SMFA

server/2024/12/28 14:08:08/

        本篇文章将介绍一个新的改进机制——SMFA(自调制特征聚合模块),并阐述如何将其应用于YOLOv11中,显著提升模型性能。随着深度学习计算机视觉中的不断进展,目标检测任务也在快速发展。YOLO系列模型(You Only Look Once)一直因其高效和快速而备受关注。然而,尽管YOLOv11在检测精度和速度上有显著提升,但在处理复杂背景或需要捕捉更多局部和全局信息时,仍然面临挑战。为此,我们引入了SMFA,通过提取图像中的全局结构和细节来进一步提高YOLOv11的性能,尤其在识别小物体或复杂背景物体时表现突出。

首先,我们将解析SMFA的工作原理,它通过EASA分支和LDE分支捕获非局部信息和局部细节,协同建模图像的全局结构与局部细节。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。

YOLOv11原模型
改进后的模型

1. Self-Modulation Feature Aggregation(SMFA)结构介绍       

        SMFA(自调制特征聚合模块): SMFA模块用于协同建模局部和非局部信息,它分为两个分支:一个是EASA(Efficient Approximation of Self-Attention,简化的自注意力分支),用于捕获非局部信息;另一个是LDE(Local Detail Estimation,局部细节估计分支),用于捕获局部细节。EASA通过对输入特征进行下采样,然后利用全局特征的方差进行调制,再与原始特征进行聚合,提取非局部结构信息。LDE分支则通过卷积操作提取输入特征中的高频局部信息。这种设计可以有效捕获图像的全局和局部细节,从而提升图像中的全局结构和细节。

2. YOLOv11与SMFA的结合   

1. 在backbone中引用:在YOLOv11的骨干网络中,可以将SMFA模块引入SPPF模块之前,。这样,网络不仅能够从输入图像中提取局部细节信息,还可以同时捕获图像的全局信息。这种局部与全局信息的结合能够大幅提升YOLOv11对目标物体的识别能力。

2. 在C3k2中使用SMFA模块:C3k2模块是一种改进的卷积层结构,用于增强特征提取的能力。本文将SMFA插入到C3k2模块中,增强全局和局部信息。

3. Self-Modulation Feature Aggregation(SMFA)代码部分

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve
YOLO11全部代码

 4. 将SMFA引入到YOLOv11中

第一: 将下面的核心代码复制到D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\nn路径下,如下图所示。

第二:在task.py中导入SMFA包

第三:在task.py中的模型配置部分下面代码

第二个改进 

第一个改进,在SPPF模块之前添加

第四:将模型配置文件复制到YOLOV11.YAMY文件中

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SMFA, []]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2_SMFA, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2_SMFA, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2_SMFA, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2_SMFA, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2_SMFA, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2_SMFA, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2_SMFA, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2_SMFA, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

第五:运行成功


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorldif __name__=="__main__":# 使用自己的YOLOv11.yamy文件搭建模型并加载预训练权重训练模型model = YOLO(r"D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\cfg\models\11\yolo11_SMFA.yaml")\.load(r'D:\bilibili\model\YOLO11\ultralytics-main\yolo11n.pt')  # build from YAML and transfer weightsresults = model.train(data=r'D:\bilibili\model\ultralytics-main\ultralytics\cfg\datasets\VOC_my.yaml',epochs=100, imgsz=640, batch=8)

 


http://www.ppmy.cn/server/153931.html

相关文章

软考-信息安全-网络安全体系与网络安全模型

4.1 网络安全体系概述 网络安全保障是一项复杂的系统工程,是安全策略,多种技术,管理方法和人员安全素质的综合。 4.1.1 网络安全体系概念 现代的网络安全问题变化莫测,要保障网络系统的安全,应当把相应的安全策略&a…

虚幻引擎是什么?

Unreal Engine,是一款由Epic Games开发的游戏引擎。该引擎主要是为了开发第一人称射击游戏而设计,但现在已经被成功地应用于开发模拟游戏、恐怖游戏、角色扮演游戏等多种不同类型的游戏。虚幻引擎除了被用于开发游戏,现在也用于电影的虚拟制片…

Android14 OTA升级速度过慢问题解决方案

软件版本:Android14 硬件平台:QCS6115 问题:OTA整包升级接近20min,太长无法忍受。 该问题为Android高版本的虚拟AB分区压缩技术所致,其实就是时间换空间,个人推测AB分区压缩会节约硬件存储空间&#xff0…

EKF 自动匹配维度 MATLAB代码

该 M A T L A B MATLAB MATLAB代码实现了扩展卡尔曼滤波( E

Python 和 Pandas 版本的对应关系

在使用 Python 和 Pandas 时,确保它们的版本兼容是非常重要的。以下是 Python 和 Pandas 版本的对应关系,帮助你选择合适的版本。 安装示例 如果你使用的是 Python 3.9,并希望安装与之兼容的 Pandas 版本,可以使用以下命令&#…

Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别

在 Milvus 中,FieldSchema 的 dim 参数和索引参数中的 "nlist" 是两个完全不同的概念,它们分别用于不同的目的。下面我将详细解释两者的区别: 1. FieldSchema 中的 dim 参数 定义:dim 参数用于指定向量字段的维度&…

商品线上个性定制,并实时预览3D定制效果,是如何实现的?

商品线上3D个性化定制的实现涉及多个环节和技术,以下是详细的解释: 一、实现流程 产品3D建模: 是实现3D可视化定制的前提,需要对产品进行三维建模。可通过三维扫描仪或建模师进行建模,将产品的外观、结构、材质等细…

国密算法SM3的GmSSL代码Android实现Demo

目录 1 国密算法简介 2 SM3的Android JNI代码实现 3 演示Demo 3.1 开发环境 3.2 功能介绍 3.3 下载地址 1 国密算法简介 国密算法是国家商用密码算法的简称。自2012年以来,国家密码管理局以《中华人民共和国密码行业标准》的方式,陆续公布了SM2/SM…