Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别

server/2024/12/28 13:38:13/

在 Milvus 中,FieldSchema 的 dim 参数和索引参数中的 "nlist" 是两个完全不同的概念,它们分别用于不同的目的。下面我将详细解释两者的区别:

1. FieldSchema 中的 dim 参数
定义:dim 参数用于指定向量字段的维度(dimension)。它定义了每个向量的长度,即向量中有多少个浮点数。
作用:当你创建一个包含向量数据的集合时,必须为向量字段指定维度。这个维度是固定的,所有插入到该字段的向量都必须具有相同的维度。
示例:

from pymilvus import FieldSchema, DataType

# 定义一个128维的向量字段
embedding_field = FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128)
影响:dim 参数直接影响向量的存储和计算。如果你使用的是128维的向量,那么每个向量将占用128个浮点数的空间。这个参数不会影响查询性能,但它决定了你能够存储的向量类型。
2. 索引参数中的 "nlist"
定义:"nlist" 是索引参数之一,用于配置倒排文件的数量(inverted file list)。它是构建索引时的一个重要参数,主要用于基于量化器的索引算法(如 IVF_FLAT、IVF_SQ8、IVF_PQ 等)。
作用:"nlist" 决定了索引的粒度。具体来说,它将整个向量空间划分为 nlist 个簇(clusters),每个簇对应一个倒排文件。在查询时,Milvus 会根据查询向量找到最接近的簇,然后在这些簇中进行精确搜索。
示例:
index_params = {
    "index_type": "IVF_FLAT",
    "params": {"nlist": 128},
    "metric_type": "L2"
}
影响:
查询性能:"nlist" 的值越大,索引的粒度越细,查询精度越高,但查询速度可能会变慢,因为需要搜索更多的簇。
构建时间:较大的 nlist 值会导致索引构建时间增加,因为需要划分更多的簇。
内存占用:较大的 nlist 值会增加索引的内存占用,因为需要存储更多的倒排文件。
3. 其他相关参数
除了 dim 和 "nlist",还有其他一些重要的参数需要注意:

index_type:指定索引类型,例如 IVF_FLAT、IVF_SQ8、HNSW 等。不同的索引类型适用于不同的场景,选择合适的索引类型可以显著提高查询性能。
metric_type:指定距离度量方式,例如 L2(欧氏距离)、IP(内积)等。不同的距离度量方式适用于不同类型的数据和应用场景。
nprobe:在查询时使用的参数,表示在查询过程中要搜索的簇数量。较大的 nprobe 值可以提高查询精度,但会降低查询速度。
4. 总结
dim:定义向量字段的维度,决定每个向量的长度,与数据存储和计算相关。
"nlist":定义索引的粒度,决定将向量空间划分为多少个簇,影响查询性能、索引构建时间和内存占用。
5. 实际应用中的选择
dim:根据你的向量数据的实际维度来设置。通常,这个值是由你的模型或特征提取方法决定的,不能随意更改。
"nlist":根据你的数据规模和查询需求来调整。对于较小的数据集,可以选择较小的 nlist 值以提高查询速度;对于较大的数据集,可以选择较大的 nlist 值以提高查询精度。


http://www.ppmy.cn/server/153925.html

相关文章

商品线上个性定制,并实时预览3D定制效果,是如何实现的?

商品线上3D个性化定制的实现涉及多个环节和技术,以下是详细的解释: 一、实现流程 产品3D建模: 是实现3D可视化定制的前提,需要对产品进行三维建模。可通过三维扫描仪或建模师进行建模,将产品的外观、结构、材质等细…

国密算法SM3的GmSSL代码Android实现Demo

目录 1 国密算法简介 2 SM3的Android JNI代码实现 3 演示Demo 3.1 开发环境 3.2 功能介绍 3.3 下载地址 1 国密算法简介 国密算法是国家商用密码算法的简称。自2012年以来,国家密码管理局以《中华人民共和国密码行业标准》的方式,陆续公布了SM2/SM…

Dataset Distillation with Attention Labels for Fine-tuning BERT

文章使用了DD更新的方式,就是先使用蒸馏数据集训练一个模型,然后计算真实数据在这个模型上的损失,更新蒸馏数据集。 文章的做法是:在训练蒸馏数据集网络时,加入了attention损失 这时候生成数据集不仅仅包含原始数据x和…

使用RKNN进行YOLOv8人体姿态估计的实战教程:yolov8-pose.onnx转yolov8-pose.rknn+推理全流程

之前文章有提到“YOLOv8的原生模型包含了后处理步骤,其中一些形状超出了RK3588的矩阵计算限制,因此需要对输出层进行一些裁剪”,通过裁剪后得到的onnx能够顺利的进行rknn转换,本文将对转rnkk过程,以及相应的后处理进行阐述。并在文末附上全部源码、数据、模型的百度云盘链…

Java/JDK下载、安装及环境配置超详细教程【Windows10、macOS和Linux图文详解】

JAVA最新版JDK 23 安装教程详解 Java Development Kit (JDK) 23 是Oracle发布的最新长期支持版本 (LTS) 之一,它带来了许多新特性和改进。 本教程将详细介绍如何在Windows、macOS和Linux系统上安装JDK 23,并涵盖一些常见问题和解决方法。 一、 准备工作…

Elasticsearch-索引的批量操作

索引的批量操作 批量查询和批量增删改 批量查询 #批量查询 GET product/_search GET /_mget {"docs": [{"_index": "product","_id": 2},{"_index": "product","_id": 3}] }GET product/_mget {"…

RestTemplate关于https的使用详解

RestTemplate关于https的使用详解 一、restTemplate注入到bean里面。 Configuration public class RestTempleConfig {BeanPrimarypublic RestTemplate restTemplate() {return new RestTemplate();}/*** https 请求的 restTemplate* return* throws Exception*/Beanpublic R…

探索Flink动态CEP:杭州银行的实战案例

摘要:本文撰写自杭州银行大数据工程师唐占峰、欧阳武林老师。将介绍 Flink 动态 CEP的定义与核心概念、应用场景、并深入探讨其技术实现并介绍使用方式。主要分为以下几个内容: Flink动态CEP简介 Flink动态CEP的应用场景 Flink动态CEP的技术实现 Flin…