自动驾驶控制与规划——Project 2: 车辆横向控制

server/2024/12/19 20:13:13/

目录

  • 零、任务介绍
  • 一、环境配置
  • 二、算法
  • 三、代码实现
  • 四、效果展示

零、任务介绍

  1. 补全src/ros-bridge/carla_shenlan_projects/carla_shenlan_stanley_pid_controller/src/stanley_controller.cpp中的TODO部分。

一、环境配置

上一次作业中没有配置docker使用gpu,后续可能有GPU计算的需求,因此重新运行一个带有GPU的容器。docker使用GPU的配置教程可以参考:在docker容器中使用nvidia显卡渲染rviz2界面。运行容器的命令如下:

docker run -d --net=host -it --name foxy_gpu --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all\-v /home/star:/home/star \-v /tmp/.X11-unix:/tmp/.X11-unix \-v /dev:/dev \-v /dev/dri:/dev/dri \--env DISPLAY=unix:1 \--env ROS_DISTRO=foxy \fishros2/ros:foxy-desktop

二、算法

Stanley控制使用前轮中心作为参考点,根据轨迹上距离参考点最近的点计算偏航误差和横向误差。
在这里插入图片描述
首先根据参考点的heading和车的heading计算偏航误差 θ e \theta_e θe。然后考虑横向误差,由几何关系可得
tan ⁡ δ e = e d , d = v / k \begin{aligned} \tan \delta_e = \frac{e}{d}, d = v/k \end{aligned} tanδe=de,d=v/k
可得
δ e = tan ⁡ − 1 k e v \delta_e = \tan^{-1} \frac{ke}{v} δe=tan1vke
此处的增益 k k k根据实验调整。结合上述两个误差项可以得到Stanley控制律
δ ( t ) = θ e ( t ) + tan ⁡ − 1 k e ( t ) v ( t ) \delta(t) = \theta_e(t) + \tan^{-1}\frac{ke(t)}{v(t)} δ(t)=θe(t)+tan1v(t)ke(t)
观察上述控制律可以发现,当车速 v v v较低时,即便是比较小的横向误差 e e e也会引起反正切函数的剧烈变化,因此在分母上增加一项常数,控制律变为
δ ( t ) = θ e ( t ) + tan ⁡ − 1 ( k e ( t ) k s + v ( t ) ) \delta(t) = \theta_e(t) + \tan^{-1}\left(\frac{ke(t)}{k_s + v(t)} \right) δ(t)=θe(t)+tan1(ks+v(t)ke(t))
当车速较快时,如果轨迹的偏航角变化较大,直接跟踪会导致车辆横向振荡,因此可以在 θ e \theta_e θe中加入阻尼,即增加PD控制器。综上所述,最终的Stanley控制器如下
δ = P D ( θ ) + tan ⁡ − 1 ( k e ( t ) k s + v ( t ) ) \delta = PD(\theta) + \tan^{-1}\left(\frac{ke(t)}{k_s + v(t)} \right) δ=PD(θ)+tan1(ks+v(t)ke(t))

三、代码实现

此处使用的PD控制器可以参考上一个project中的实现方法自动驾驶控制与规划——Project 1: 车辆纵向控制。为了避免低速行驶时的横向振荡,加入参数 k s k_s ks

class StanleyController {
public:StanleyController(){};~StanleyController(){};void LoadControlConf();void ComputeControlCmd(const VehicleState &vehicle_state,const TrajectoryData &planning_published_trajectory,ControlCmd &cmd);void ComputeLateralErrors(const double x, const double y, const double theta,double &e_y, double &e_theta);TrajectoryPoint QueryNearestPointByPosition(const double x, const double y);protected:std::vector<TrajectoryPoint> trajectory_points_;double k_y_ = 0.0;double k_s_ = 0.0;	// 低速行驶时v小,较小的e也会导致atan振荡double u_min_ = 0.0;double u_max_ = 100.0;double theta_ref_;double theta_0_;
};
} // namespace control
} // namespace shenlan

这里的参数可以根据实验效果进行调整

void StanleyController::LoadControlConf() {k_y_ = 0.5;k_s_ = 0.5;
}

控制器整体的流程是:1.计算heading error;2.计算cross tracking error;3.利用Stanley控制器计算控制指令。需要注意对输出进行限幅。

void StanleyController::ComputeControlCmd(const VehicleState &vehicle_state, const TrajectoryData &planning_published_trajectory, ControlCmd &cmd) {trajectory_points_ = planning_published_trajectory.trajectory_points;// find the closest point on the reference trajectoryTrajectoryPoint nearest_pt = QueryNearestPointByPosition(vehicle_state.x, vehicle_state.y);// theta_ref_在QueryNearestPointByPosition中已经更新了// get lateral error and heading errordouble e_y = 0.0;double e_theta = 0.0;ComputeLateralErrors(vehicle_state.x - nearest_pt.x, vehicle_state.y - nearest_pt.y, vehicle_state.heading, e_y, e_theta);double e_theta_pd = e_theta_pid_controller.Control(e_theta, 0.01);cmd.steer_target = e_theta_pd + atan2(k_y_ * e_y, vehicle_state.velocity + k_s_);// 输出限幅if (cmd.steer_target > 1.0) {cmd.steer_target = 1.0;} else if (cmd.steer_target < -1.0) {cmd.steer_target = -1.0;}
}

在计算误差时需要注意,横向误差是带有方向的,以车辆朝向为参考,左正右负。偏航误差在计算时超过 [ − π , π ) [-\pi, \pi) [π,π)的需要重新标准化到 [ − π , π ) [-\pi, \pi) [π,π)中。

void StanleyController::ComputeLateralErrors(const double x, const double y, const double theta, double &e_y, double &e_theta) {// 车头方向的单位矢量 (cos(theta), sin(theta))// 横向误差以车辆朝向为参考,左正右负e_y = cos(theta) * y - sin(theta) * x;e_theta = theta - theta_ref_;if (e_theta <= -M_PI) {e_theta += 2 * M_PI;} else if (e_theta >= M_PI) {e_theta -= 2 * M_PI;}std::cout << "theta: " << theta << " theta_ref_: " << theta_ref_ << std::endl;std::cout << "e_theta: " << e_theta << std::endl;
}

四、效果展示

在宿主机启动carla仿真器

./CarlaUE4.sh -carla-rpc-port=2000 -prefernvidia

在docker容器中启动carla-ros-bridge

ros2 launch carla_shenlan_bridge_ego_vis carla_bridge_ego_vehicle.launch.py

启动控制节点

ros2 run carla_shenlan_stanley_pid_controller carla_shenlan_stanley_pid_controller_node

运行效果如下:

自动驾驶控制与规划——Project 2: 车辆横向控制


http://www.ppmy.cn/server/151530.html

相关文章

马尔可夫决策过程

目录标题 一、简单介绍什么是马尔可夫决策过程二、马尔可夫过程2.1 随机过程2.2 马尔可夫的性质2.2 马尔可夫过程 三、马尔可夫奖励过程3.1 回报3.2 价值函数 四、马尔可夫决策过程4.1 策略4.2 状态价值函数4.3 动作价值函数4.4 贝尔曼期望方程 五、蒙特卡洛方法六、占用度量七…

解决 Ubuntu 20.04 上编译 OpenCV 3.2 时的类型不匹配错误

解决 Ubuntu 20.04 上编译 OpenCV 3.2 时的类型不匹配错误 make[2]: *** [modules/python3/CMakeFiles/opencv_python3.dir/build.make:329&#xff1a;modules/python3/CMakeFiles/opencv_python3.dir/__/src2/cv2.cpp.o] 错误 1 make[1]: *** [CMakeFiles/Makefile2:11856&a…

SpringBoot feign基于HttpStatus重试

场景 基于springboot开发的项目&#xff0c;对接第三方&#xff0c;第三方的接口有限流策略&#xff0c;某个时间段内有调用频率限制&#xff0c;返回的状态码HttpStatus不是200&#xff0c;而HttpStatus是429。现基于HttpStatus我们发起的重试。 技术点 springbootfeign fe…

机器学习周报(12.9-12.15)

文章目录 摘要Abstract 1 Swin Transformer1.1 输入1.2 Patch Partition1.3 Linear Embedding1.4 Patch Merging1.5 Swin Transformer Block1.6 代码总结 摘要 本篇博客介绍了采用类似于卷积核的移动窗口进行图像特征提取的Swin Transformer网络模型&#xff0c;这是一种基于T…

前端使用xlsx.js实现 Excel 文件的导入与导出功能

前端使用xlsx.js实现 Excel 文件的导入与导出功能 在现代的 Web 开发中&#xff0c;处理文件上传和导出功能已经变得越来越常见&#xff0c;尤其是 Excel 文件的导入与导出。 我们将使用 Vue.js 和 XLSX.js 库来处理 Excel 文件的读取和生成。XLSX.js 是一个强大的 JavaScrip…

基于python对网页进行爬虫简单教程

python对网页进行爬虫 基于BeautifulSoup的爬虫—源码 """ 基于BeautifulSoup的爬虫### 一、BeautifulSoup简介1. Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。它是一个工具箱&#xff0c;通过解析文档为用户提供需要…

python模拟练习第一期

问题一 如果一个数 p 是个质数&#xff0c;同时又是整数 a的约数&#xff0c;则 p 称为 a的一个质因数。 请问 2024 有多少个质因数&#xff1f; 步骤 1: 分解 2024 首先&#xff0c;2024 是偶数&#xff0c;说明可以被 2 整除。我们从 2 开始进行除法分解&#xff1a; 202…

springcloud-gateway获取应用响应信息乱码

客户端通过springcloud gateway跳转访问tongweb上的应用&#xff0c;接口响应信息乱码。使用postman直接访问tongweb上的应用&#xff0c;响应信息显示正常。 用户gateway中自定义了实现GlobalFilter的Filter类&#xff0c;在该类中获取了上游应用接口的响应信息&#xff0c;直…