【反无人机目标检测与跟踪】DUT Anti-UAV数据集介绍

server/2024/12/16 19:18:42/

DUT Anti-UAV数据集是IEEE TITS 2023上大连理工大学团队提出的Vision-based Anti-UAV Detection and Tracking论文中提出的一个可见光反无人机检测与跟踪数据集。

因为反无人机目标检测与跟踪的数据集都比较少,因此这个数据集也非常宝贵。

在这里插入图片描述
这个数据集的链接如下

数据集链接

在这里插入图片描述
作者给出了数据集中检测与跟踪两部分的谷歌网盘和百度网盘的链接,可以直接下载

数据集简介

其中包含检测和跟踪子集。检测数据集包括训练集(5200个图像)、验证集(2600个图像)和测试集(2200个图像)。跟踪数据集包括20个序列。

DUT反无人机数据集包含检测和跟踪子集。检测数据集被分成训练集、测试集和验证集。跟踪数据集包含20个短期和长期序列。所有帧和图像都经过精确的手动注释。图像和物体的详细信息如表I所示。具体来说,检测数据集总共包含10,000幅图像,其中训练集、测试集和验证集分别具有5200、2200和2600幅图像。考虑到一幅图像包含多个目标的情况,检测目标的总数为10,109个,其中训练集、测试集和验证集分别具有5243个、2245个和2621个目标。

在这里插入图片描述

数据集特点

图像分辨率:数据集包含各种分辨率的图像。对于检测数据集,最大图像的高度和宽度为3744和5616,而最小图像的大小为160 × 240;他们之间的巨大差异。跟踪数据集具有1080 × 1920和720 × 1280分辨率的两种类型帧。图像分辨率的各种设置可以使模型适应不同大小的图像,避免过拟合。

目标和背景:为了丰富物体的多样性,防止模型过度拟合,我们选择了超过35种类型的无人机。在图3中可以看到几个示例。数据集中的场景信息也是多样的。鉴于无人机大多在户外飞行,我们数据集的背景室外环境,包括天空、乌云、丛林、高层建筑、居民楼、农田、操场。此外,我们的数据集中还考虑了各种光照条件(如白天、夜晚、黎明和黄昏)和不同的天气(如晴天、阴天和下雪天)。图4中示出了来自检测子集的各种示例。数据集中复杂的背景和明显的室外照明变化对于训练鲁棒和高性能的无人机检测模型至关重要。

在这里插入图片描述图3。数据集中不同类型无人机的示例

在这里插入图片描述
图4。我们的数据集的检测图像和注释的示例

目标比例:无人机的尺寸往往很小,户外环境广阔。因此,在我们的数据集中,小目标的比例很大。我们根据完整图像计算物体面积比,并绘制比例分布的直方图,分别如表I和图2所示。对于检测数据集,包括训练集、测试集和验证集,平均目标面积比约为0.013,最小目标面积比为1.9 E-06,最大目标占整个图像的0.7。大多数物体都很小。整个图像中的目标大小的比例大约小于0.05。对于跟踪数据集,序列中目标的比例平滑变化。平均物体面积比为0.0031,最大比为0.045,最小比为2.7 E-04。与一般检测和跟踪数据集中的目标相比,小目标更难检测和跟踪,也更容易出现故障,如漏检和跟踪丢失。
在这里插入图片描述
图2.DUT反无人机数据集的纵横比和比例分布

目标纵横比:表I和图2还示出了物体纵横比。我们数据集中的目标有不同的纵横比,最大值为6.67,最小值为1.0。在一个序列中,相同的物体具有显著的纵横比变化。例如,“video10”中的目标纵横比在1.0和4.33之间变化。大多数目标的纵横比在1.0到3.0之间。

目标位置:图1以散点图的形式描述了目标相对中心位置的位置分布。大多数物体都集中在图像的中心。所有集合中目标运动的范围不同,并且目标的水平和垂直运动分布均匀。对于跟踪数据集,一个序列中的目标的边界框是连续的。根据图1(d),除了图像的中心区域之外,目标还频繁地向图像的右侧和左下方移动。

在这里插入图片描述
图1.DUT反无人机数据集的位置分布

数据集挑战

通过对最后一小节中提出的数据集特征的分析,发现无人机检测和跟踪遇到了许多困难和挑战。主要挑战是物体太小、背景复杂或与物体相似、光线变化明显。也容易出现物体模糊、快速运动、相机运动和视野外的情况。图4和图5分别示出了反映上述挑战的检测和跟踪数据集的示例。

在这里插入图片描述
图4。数据集的检测图像和注释的示例
在这里插入图片描述
图5。数据集的跟踪序列和注释的示例


http://www.ppmy.cn/server/150704.html

相关文章

NLP大模型学习总结

参考课程 【清华NLP】刘知远团队大模型公开课全网首发|带你从入门到实战-知乎 一、自然语言处理基础 1.1 自然语言处理的基本任务 让计算机理解人所说的文本 语音 词性标注:区分每个词名词、动词、形容词等词性命名实体的识别:名词的具体…

昇思25天学习打卡营第33天|共赴算力时代

文章目录 一、平台简介二、深度学习模型2.1 处理数据集2.2 模型训练2.3 加载模型 三、共赴算力时代 一、平台简介 昇思大模型平台,就像是AI学习者和开发者的超级基地,这里不仅提供丰富的项目、模型和大模型体验,还有一大堆经典数据集任你挑。…

简单的Java小项目

学生选课系统 在控制台输入输出信息&#xff1a; 在eclipse上面的超级简单文件结构&#xff1a; Main.java package experiment_4;import java.util.*; import java.io.*;public class Main {public static List<Course> courseList new ArrayList<>();publi…

Unreal的Audio::IAudioCaptureStream在Android中录制数据异常

修改OpenAudioCaptureStream启动参数为PCM_32&#xff0c;在PC上正常&#xff0c;在Android系统&#xff0c;读取的的数据计算出的音量值在0.4-0.6之间跳动&#xff0c;数据异常。 Audio::FAudioCaptureDeviceParams Params;/** 设置声卡不支持的采样数和通道数开始音频流不会成…

iOS 18.2 今天正式推送更新,带来了备受瞩目的 ChatGPT 集成以及更多 Apple Intelligence 工具

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【C++】sophus : rotation_matrix.hpp 处理旋转矩阵的辅助函数 (二)

这段代码属于Sophus 命名空间&#xff0c;提供了一些处理旋转矩阵的辅助函数&#xff0c;具体功能如下&#xff1a; isOrthogonal函数&#xff1a; 用途&#xff1a;检查一个方阵是否为正交矩阵。实现方法&#xff1a;通过计算矩阵与其转置矩阵相乘后与单位矩阵的差值的范数是否…

家校通小程序实战教程09搭建部门管理APIs

目录 1 创建APIs2 完整代码3 代码解释3.1 获取原始数据3.2 平铺数据3.3 构建树形结构3.4 组装树形结构3.5 数据返回 4 执行测试总结 我们现在已经调用了antd实现了前端的界面&#xff0c;光有界面还是不够的&#xff0c;还需要和数据源进行交互&#xff0c;本节介绍后端API的搭…

Flutter踩坑记录(一)debug运行生成的项目,不能手动点击运行

问题 IOS14设备&#xff0c;切后台划掉&#xff0c;二次启动崩溃。 原因 IOS14以上 flutter 不支持debugger模式下的二次启动 。 要二次启动需要以release方式编译工程安装至手机。 操作步骤 清理项目&#xff1a;在命令行中运行flutter clean来清理之前的构建文件。重新构…