【Python爬虫五十个小案例】爬取豆瓣电影Top250

server/2024/11/29 3:40:09/

请添加图片描述

博客主页:小馒头学python

本文专栏: Python爬虫五十个小案例

专栏简介:分享五十个Python爬虫小案例

在这里插入图片描述

🪲前言

在这篇博客中,我们将学习如何使用Python爬取豆瓣电影Top250的数据。我们将使用requests库来发送HTTP请求,BeautifulSoup库来解析HTML页面,并将数据存储到CSV文件中。这个爬虫将自动获取豆瓣电影Top250页面的信息,包括电影名称、导演、主演、评分等详细信息

豆瓣电影Top250是一个包含豆瓣评分最高的250部电影的榜单,是电影爱好者查找电影的一大宝库。本博客将指导大家如何通过编写Python爬虫自动获取豆瓣电影Top250的数据

🪲环境准备

首先,我们需要安装一些Python库来完成本次任务。以下是我们将使用的库:

  • requests:用来发送HTTP请求并获取网页内容。
  • BeautifulSoup:用来解析HTML页面,提取我们需要的数据。
  • csv:将爬取的数据保存到CSV文件中。

因为我们使用的是Python进行爬虫,所以我们使用的命令行是

pip install requests beautifulsoup4 csv

🪲爬虫原理与分析

豆瓣电影Top250的URL是 https://movie.douban.com/top250。页面内容是分页显示的,每一页展示25部电影,最多5页。我们需要访问这些页面并提取电影数据

数据结构分析

每一部电影的信息在HTML结构中都有相应的标签,我们需要从中提取出以下信息:

  • 电影名称
  • 电影评分
  • 电影导演
  • 电影主演
  • 电影年份
  • 电影类型

通过使用BeautifulSoup解析HTML,我们可以轻松提取这些信息

🪲代码具体的实现

发送请求获取网页内容

我们首先使用requests库发送请求来获取网页内容。豆瓣会返回HTML页面,我们将把这些内容传递给BeautifulSoup进行解析

python">import requests
from bs4 import BeautifulSoup# 设置请求头,避免被豆瓣屏蔽
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}# 获取豆瓣电影Top250的前五页数据
base_url = "https://movie.douban.com/top250"
movie_list = []def get_page(url):response = requests.get(url, headers=headers)return response.text

解析网页内容

使用BeautifulSoup解析HTML页面,找到每部电影的信息。每部电影的信息包含在div标签中,类名为item

python">def parse_page(html):soup = BeautifulSoup(html, 'html.parser')movies = soup.find_all('div', class_='item')for movie in movies:title = movie.find('span', class_='title').textrating = movie.find('span', class_='rating_num').textdirector, actors = movie.find('div', class_='bd').find('p').text.strip().split("\n")[:2]year = movie.find('div', class_='bd').find('p').text.strip().split("\n")[0]movie_type = movie.find('span', class_='genre').text.strip()movie_info = {'title': title,'rating': rating,'director': director,'actors': actors,'year': year,'type': movie_type}movie_list.append(movie_info)

提取电影数据

我们现在可以循环访问每一页的URL并提取数据。豆瓣电影Top250有5页,URL结构为https://movie.douban.com/top250?start=X,其中X为每页的起始索引(0, 25, 50, …)

接下来我们的其他案例也会采取类似的分析方式,同学们可以

def main():for start in range(0, 250, 25):url = f"{base_url}?start={start}"html = get_page(url)parse_page(html)# 输出结果for movie in movie_list:print(movie)if __name__ == "__main__":main()

保存数据到CSV文件或者Excel文件

为了方便后续的数据分析,我们可以将数据保存到CSV文件中

import csvdef save_to_csv():keys = movie_list[0].keys()with open('douban_top250.csv', 'w', newline='', encoding='utf-8') as output_file:dict_writer = csv.DictWriter(output_file, fieldnames=keys)dict_writer.writeheader()dict_writer.writerows(movie_list)save_to_csv()

如果是Excel那么可以参考下面的案例代码

python">import pandas as pd  # 导入pandas库def save_to_excel():df = pd.DataFrame(movie_list)  # 将电影列表转换为DataFramedf.to_excel('douban_top250.xlsx', index=False, engine='openpyxl')  # 保存为Excel文件

🪲完整的代码

python">import csvimport requests
from bs4 import BeautifulSoup
import pandas as pd  # 导入pandas库# 设置请求头,避免被豆瓣屏蔽
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}# 获取豆瓣电影Top250的前五页数据
base_url = "https://movie.douban.com/top250"
movie_list = []# 发送请求获取网页内容
def get_page(url):response = requests.get(url, headers=headers)return response.text# 解析网页内容并提取电影信息
def parse_page(html):soup = BeautifulSoup(html, 'html.parser')movies = soup.find_all('div', class_='item')for movie in movies:title = movie.find('span', class_='title').textrating = movie.find('span', class_='rating_num').textdirector_actors = movie.find('div', class_='bd').find('p').text.strip().split("\n")[:2]director = director_actors[0]actors = director_actors[1] if len(director_actors) > 1 else ''# 处理电影类型,避免找不到的情况genre_tag = movie.find('span', class_='genre')movie_type = genre_tag.text.strip() if genre_tag else '未知'# 处理电影年份year_tag = movie.find('div', class_='bd').find('p').text.strip().split("\n")[0]# 构建电影信息字典movie_info = {'title': title,'rating': rating,'director': director,'actors': actors,'year': year_tag,'type': movie_type}# 将电影信息添加到列表中movie_list.append(movie_info)# 爬取豆瓣电影Top250的所有页面
def main():# 遍历前5页的豆瓣Top250for start in range(0, 250, 25):url = f"{base_url}?start={start}"html = get_page(url)parse_page(html)# 输出结果for movie in movie_list:print(movie)def save_to_csv():keys = movie_list[0].keys()  # 获取电影数据字典的键(即列名)# 写入CSV文件with open('douban_top250.csv', 'w', newline='', encoding='utf-8-sig') as output_file:dict_writer = csv.DictWriter(output_file, fieldnames=keys)dict_writer.writeheader()  # 写入列名dict_writer.writerows(movie_list)  # 写入电影数据# 主函数
if __name__ == "__main__":main()save_to_csv()print("爬取完成,数据已保存到 douban_top250.csv")

🪲运行效果

运行上述代码后,你将会得到一个名为douban_top250.csv的文件,文件内容如下所示:

在这里插入图片描述

下图是保存为csv文件的格式,这里注意encoding=‘utf-8-sig’,encoding如果等于utf-8,那么直接双击csv文件会乱码的

在这里插入图片描述

🪲总结

本文主要介绍了如果使用简单的爬虫进行数据的爬取,这里主要进行豆瓣电影Top250的数据爬取,我们使用的库就是requests、bs4、pandas、csv等库,本节主要重在案例的实践,还想了解更多的爬虫案例可以关注我的专栏

Python爬虫五十个小案例:https://blog.csdn.net/null18/category_12840403.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12840403&sharerefer=PC&sharesource=null18&sharefrom=from_link


http://www.ppmy.cn/server/145804.html

相关文章

Spring Boot开发实战:从入门到构建高效应用

Spring Boot 是 Java 开发者构建微服务、Web 应用和后端服务的首选框架之一。其凭借开箱即用的特性、大量的自动化配置和灵活的扩展性,极大简化了开发流程。本文将以实战为核心,从基础到高级,全面探讨 Spring Boot 的应用开发。 一、Spring B…

命令行版 postman 之 post 小工具

依赖 curljq post.sh #!/bin/bashBASEhttp://119.119.119.119 METHOD$1 URL$BASE/$2 LOGIN$BASE/login echo $URL token$(curl --silent $LOGIN -H Accept: application/json, text/plain, */* -H Accept-Language: zh-CN,zh;q0.9 -H Connection: keep-alive -H Con…

JSON数据转化为Excel及数据处理分析

在现代数据处理中,JSON(JavaScript Object Notation)因其轻量级和易于人阅读的特点而被广泛使用。然而,有时我们需要将这些JSON数据转化为Excel格式以便于进一步的分析和处理。本文将介绍如何将JSON数据转化为Excel文件&#xff0…

网络安全笔记

# 网络安全概述 ### 网络安全的特征 - **机密性:信息不泄露给非授权的实体或对象** - **完整性:数据未经授权不能进行改变的特性, 即信息在存储或传输过程中保持不被修改,不被破坏的特性** - **可用性:可被授权实体访…

java基础知识(常用类)

目录 一、包装类(Wrapper) (1)包装类与基本数据的转换 (2)包装类与String类型的转换 (3)Integer类和Character类常用的方法 二、String类 (1)String类介绍 1)String 对象用于保存字符串,也就是一组字符序列 2)字符串常量对象是用双引号括起的字符序列。例如:&quo…

数据结构:链表进阶

链表进阶 1. ArrayList的缺陷2. 链表2.1 链表的概念及结构2.2 链表的实现 3.链表面试题4.LinkedList的使用5.1 什么是LinkedList4.2 LinkedList的使用 5. ArrayList和LinkedList的区别 1. ArrayList的缺陷 通过源码知道,ArrayList底层使用数组来存储元素&#xff1…

VsCode 插件推荐(个人常用)

VsCode 插件推荐(个人常用)

物联网实验室建设方案

一、物联网实验室建设 (1) 基础理论教学云平台 唯众基础理论教学云平台是一个专为物联网相关专业教学打造的综合性在线教学平台。该平台凭借先进的技术架构和丰富的教学资源,为师生提供了一个高效、便捷、互动的学习环境。以下是该平台的主要特点和功能描述&#…