【算法】【优选算法】前缀和(下)

server/2024/11/19 6:00:10/

目录

  • 一、560.和为K的⼦数组
  • 二、974.和可被K整除的⼦数组
  • 三、525.连续数组
  • 四、1314.矩阵区域和

一、560.和为K的⼦数组

题目链接:560.和为K的⼦数组
题目描述:

题目解析:

  • 求数组中子串的和为k的个数。

1.1 前缀和

解题思路:

  • 假设已经创建好了一个前缀和数组dp,我们使用前缀和的时候,判断从0到 i 位置的和为k的子数组个数,只需要在dp下标[ 0 , i - 1 ]中找dp元素值为dp[ i ] - k的个数即可。
  • 所以我们使用一个容器hash表来存储从0 到 i - 1的前缀和的个数,关键字key就是前缀和,values就是次数。
  • 细节处理:
    • 我们不需要真的使用前缀和数组,只需要遍历原数组时,用一个变量记录遍历过的元素和即可。
    • 当该前缀和就是k的时候,我们上面条件没有考虑,所以我们还要先放入(0,1)表示这种情况。

解题代码:

java">//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int subarraySum(int[] nums, int k) {Map<Integer,Integer> hash = new HashMap<>();hash.put(0,1);int sum = 0;int ret = 0;for(int i = 0; i < nums.length; i++) {sum += nums[i];ret += hash.getOrDefault(sum-k,0);hash.put(sum, hash.getOrDefault(sum,0)+1);}return ret;}
}

1.2 暴力枚举

解题思路:

  • 直接使用两层for循环,将每一种可能枚举出来。

解题代码:

java">//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int subarraySum(int[] nums, int k) {int ret = 0;for(int i = 0; i < nums.length; i++) {int sum = 0;for(int j = i; j < nums.length; j++) {sum += nums[j];if(sum == k) {ret++;}}}return ret;}
}

二、974.和可被K整除的⼦数组

题目链接:974.和可被K整除的⼦数组
题目描述:

题目解析:

  • 跟上一道题一样的思路,只不过这个是求能被整除的个数而已。

2.1 前缀和

解题思路:

  • 同余定理:如果(a - b)% p == 0 那么a % p 和b % p值相等。
  • Java中负数对正数取余修正:在Java中负数对正数取余余数会是负数,修正方法就是:(a % p + p)% p
  • 使用hash表将i下标前的每一个前缀和与k的余数存入。
  • 再看前面前缀和与当前 前缀和的余数相同的个数即可。
  • 当[0 , i]本身前缀和余数为0的时候,就是一个符合条件的子数组。

解题代码:

java">//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int subarraysDivByK(int[] nums, int k) {int ret = 0;Map<Integer,Integer> hash = new HashMap<>();hash.put(0 % k , 1);int sum = 0;for(int x : nums) {sum += x;int key = (sum % k + k ) % k;ret += hash.getOrDefault(key,0);hash.put(key, hash.getOrDefault(key , 0) + 1);}return ret;}
}

2.2 暴力枚举

解题思路:

  • 直接遍历数组,在将遍历元素的和取余即可。
  • 会超时。

解题代码:

java">//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int subarraysDivByK(int[] nums, int k) {int ret = 0;for(int i = 0; i < nums.length; i++) {int sum = 0;for(int j = i; j < nums.length; j++) {sum += nums[j];if((sum % k + k) % k == 0) ret++;}}return ret;}
}

三、525.连续数组

题目链接:525.连续数组
题目描述:

题目解析:

  • 要我们返回子数组中 0 和1 数量相等的最长子数组的长度。

3.1 前缀和

解题思路:

  • 我们使用一个容器hash表,关键字key来记录原数组每个下标i中的1与0个数差,而values记录这个差值的最小下标。
  • 注意边界情况,如果刚好整个数组满足条件,结果就是数组长 又等于nums.length-1 + 1所以我们初始一个(0,-1)
  • 求长度的时候,我们在前面找到 j 下标与现在 i 下标关键字一样,那么数组区间就是[ j+1 , i ]

解题代码:

java">//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int findMaxLength(int[] nums) {int ret = 0;int n = nums.length;Map<Integer,Integer> hash = new HashMap<>();hash.put(0,-1);//前面1和0个数之差int num = 0;for(int i = 0; i < n; i++) {if(nums[i] == 0) num--;else num++;if(hash.containsKey(num)) ret = Math.max(ret, i - hash.get(num));else hash.put(num, i);}return ret;}
}

3.2 暴力枚举

解题思路:

  • 两层for循环遍历数组,记录每一个子数组中1和0的个数,
  • 当个数相同的时候,更新结果。
  • 会超时

解题代码:

java">//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int findMaxLength(int[] nums) {int ret = 0;for(int i = 0; i < nums.length; i++) {int oneNum = 0;int zeroNum = 0;for(int j  = i; j < nums.length; j++) {if(nums[j] == 0) zeroNum++;else oneNum++;if(oneNum == zeroNum) ret = Math.max(ret,j-i+1);}}return ret;}
}

四、1314.矩阵区域和

题目链接:1314.矩阵区域和
题目描述:

题目解析:

  • 给一个二维数组,给一个k,返回的二维结果数组中数组( i , j )下标的值是原数组( i-k , j-k )到( i+k , j+k)的和。
  • 就像下图中红方框框起来的:

4.1 前缀和

解题思路:

  • 其实着就是前缀和上篇中给出的二维前缀和模版。
  • 我们使用一个二维数组dp比原来数组多一行一列,dp[ i ][ j ]就是原数组中(0 , 0)到(i - 1 , j -1)的元素和。
  • dp[ i ][ j ] = dp[ i - 1][j - 1] + nums[ i - 1][j - 1]。
  • 在结果数组中与原数组大小一样,本来是求原数组( i-k , j-k )到( i+k , j+k)的和。那么对应到dp数组中,都要加1。
  • 注意越界,如果( i-k , j-k )小于0那么就是0,i+k大于原数组行数,那么就是原数组行数,j+k大于原数组列数,那么就是原数组列数。

解题代码:

java">//时间复杂度:O(n^2)
//空间复杂度:O(n^2)
class Solution {public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] dp = new int[n+1][m+1];dp[0][0] = mat[0][0];for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + mat[i-1][j-1];}    } int[][] ret = new int[n][m]; for(int i = 0; i < n; i++) {for(int j = 0; j < m; j++) {int x2 = i+k > n-1 ? n-1 : i+k;int y2 = j+k > m-1 ? m-1 : j+k;int x1 = i-k < 0 ? 0 : i-k;int y1 = j-k < 0 ? 0 : j-k;ret[i][j] = dp[x2+1][y2+1] - dp[x2+1][y1-1+1] - dp[x1-1+1][y2+1]+dp[x1-1+1][y1-1+1];}}return ret;}
}

4.2 暴力枚举

解题思路:

  • 先两层for循环,拿到结果数组行列,
  • 再两层for循环,求原数组( i-k , j-k )到( i+k , j+k)的和。

解题代码:

java">//时间复杂度:O(n^4)
//空间复杂度:O(1)
class Solution {public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] ret = new int[n][m];for(int i = 0; i < n; i++) {for(int j = 0; j < m; j++) {int x2 = i+k > n-1 ? n-1 : i+k;int y2 = j+k > m-1 ? m-1 : j+k;int x1 = i-k < 0 ? 0 : i-k;int y1 = j-k < 0 ? 0 : j-k;for(int w = x1; w <= x2; w++) {for(int q = y1; q <= y2; q++) {ret[i][j] += mat[w][q];}}}}return ret;}
}

http://www.ppmy.cn/server/143099.html

相关文章

网页web无插件播放器EasyPlayer.js H.265流媒体播放器的decoder.js报Unexpected token ‘<‘错误

EasyPlayer.js H.265流媒体播放器属于一款高效、精炼、稳定且免费的流媒体播放器&#xff0c;可支持多种流媒体协议播放&#xff0c;支持H.264与H.265编码格式&#xff0c;性能稳定、播放流畅&#xff1b;支持WebSocket-FLV、HTTP-FLV&#xff0c;HLS&#xff08;m3u8&#xff…

【android USB 串口通信助手】stm32 源码demo 单片机与手机通信 Android studio 20241118

android 【OTG线】 接 下位机STM32【USB】 通过百度网盘分享的文件&#xff1a;USBToSerialPort.apk 链接&#xff1a;https://pan.baidu.com/s/122McdmBDUxEtYiEKFunFUg?pwd8888 提取码&#xff1a;8888 android 【OTG线】 接 【USB转TTL】 接 【串口(下位机 SMT32等)】 需…

c++:模板

1.泛型编程 在认识模板之前&#xff0c;我们首先要认识泛型编程 泛型编程是一种编程范式&#xff0c;它使得算法和数据结构能够独立于特定数据类型进行设计和实现。通过使用泛型&#xff0c;开发者可以编写一次代码&#xff0c;然后在不同的数据类型上进行重用&#xff0c;从…

【AIGC】如何使用高价值提示词Prompt提升ChatGPT响应质量

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | 提示词Prompt应用实例 文章目录 &#x1f4af;前言&#x1f4af;提示词英文模板&#x1f4af;提示词中文解析1. 明确需求2. 建议额外角色3. 角色确认与修改4. 逐步完善提示5. 确定参考资料6. 生成和优化提示7. 生成最终响…

MySQL的编程语言

一、MySQL基础 使用系统的全局变量@@VERSION查看当前使用的MySQL的版本信息,SQL语句如下: select @@version; 将局部变量varl声明为char的类型,长度值为10,并为其赋值为“程菲” begin declare var1 char(10); set @var1="程菲"; end 通过局部变量查看d_eams数…

Flutter-左侧导航栏跟随窗口的宽变化

前言 现在有一个需求&#xff1a;左侧导航栏跟随窗口的宽度变化而变化 当宽度>1000时&#xff0c;左侧导航栏全部展示&#xff0c;1000>宽度>500时,左侧导航栏只展示图标&#xff0c;500>宽度时&#xff0c;左侧导航栏消失&#xff0c;顶部出现菜单选择图标&…

【ORACLE战报】2024年10月OCP考试战报

原创 厦门微思网络 微思 | 新班预告&#xff1a; 所有的收获都是默默耕耘的成果 2024.10月【最新考试成绩出炉】 来吧&#xff0c;展示 &#xff08;以下为部分学员成绩单&#xff09; &#xff08;部分学员证书&#xff09; 往期考试战报回顾&#xff1a; 【ORACLE战报】…

解析“ChatGPT网络错误”:从网络专线到IP地址的根源与解决方案

在日常使用 ChatGPT 或其他在线服务时&#xff0c;偶尔会遇到“网络错误”的提示&#xff0c;尤其是在请求响应时间较长或出现连接中断的情况下。这种错误常常让用户感到困扰&#xff0c;但实际上&#xff0c;网络错误的发生并不总是因为服务端出现问题&#xff0c;很多时候&am…