MIT线性代数

server/2024/12/23 20:10:55/

本文链接的原创作者为

浊酒南街https://blog.csdn.net/weixin_43597208

 

 

第1讲

MIT_线性代数笔记:第 01 讲 行图像和列图像-CSDN博客

第2讲

MIT_线性代数笔记:第 02 讲 矩阵消元_矩阵first pivot-CSDN博客

第3讲

MIT_线性代数笔记:第 03 讲 矩阵的乘法和逆矩阵_矩阵行乘列和列乘行-CSDN博客

第4讲

MIT_线性代数笔记:第04讲矩阵的LU分解-CSDN博客

第5讲

MIT_线性代数笔记:第 05 讲 转置、置换和空间_x>0,y>0是否r2的子空间-CSDN博客

第6讲

MIT_线性代数笔记:第 06 讲 列空间和零空间_如果一个向量集合对向量的线性运算封闭,那么这个向量集合是向量空间-CSDN博客

第7讲

MIT_线性代数笔记:第 07 讲 求解 Ax=0:主变量,特解_已知行最简矩阵如何求矩阵nullspace-CSDN博客

第8讲

MIT_线性代数笔记:第 08 讲 求解 Ax=b:可解性与结构_particular solution怎么求-CSDN博客

第9讲

MIT_线性代数笔记:第 09 讲 线性无关,基和维数_spanning a space-CSDN博客

第10讲

MIT_线性代数笔记:第 10 讲 四个基本子空间-CSDN博客

第11讲

MIT_线性代数笔记:第 11 讲矩阵空间、秩 1 矩阵和小世界图_rankone matrices是什么意思-CSDN博客

第12讲

MIT_线性代数笔记:第 12 讲 图、网络、关联矩阵_incidence matrices-CSDN博客

第13讲复习一

MIT_线性代数笔记: 复习一_线性代数mit csdn paul huang-CSDN博客

第14讲

MIT_线性代数笔记:第 14 讲 正交向量与正交子空间_orthogonal complements-CSDN博客

第15讲

MIT_线性代数笔记:第 15 讲 子空间投影-CSDN博客

第16讲

MIT_线性代数笔记:第 16 讲 投影矩阵和最小二乘法_零空间投影矩阵-CSDN博客

第17讲

MIT_线性代数笔记:第 17 讲 正交矩阵和施密特正交化_matrix orthonormal-CSDN博客

第18讲

MIT_线性代数笔记:第 18 讲 行列式及其性质-CSDN博客

第19讲

MIT_线性代数笔记:第 19 讲 行列式公式和代数余子式_mit 线性代数 行列式-CSDN博客

第20讲

MIT_线性代数笔记:第 20 讲 克莱姆法则、逆矩阵、体积_克莱姆法则公式-CSDN博客

第21讲

MIT_线性代数笔记:第 21 讲 特征值和特征向量_det(a λi)化为多项式相乘-CSDN博客

第22讲

MIT_线性代数笔记:第 22 讲 对角化和矩阵的幂_maple 对角矩阵-CSDN博客

第23讲

MIT_线性代数笔记:第 23 讲 微分方程和 exp(At)_线性代数微分方程 mit 笔记-CSDN博客

第24讲

MIT_线性代数笔记:第 24 讲 马尔可夫矩阵;傅里叶级数_麻省理工线性代数24笔记-CSDN博客

第25讲复习二

MIT_线性代数笔记:复习二_mit线性代数笔记-CSDN博客

第26讲

MIT_线性代数笔记:第 25 讲 对称矩阵和正定性_正定对称矩阵-CSDN博客

第27讲

MIT_线性代数笔记:第 26 讲 复矩阵;快速傅里叶变换_线性代数mit傅里叶矩阵-CSDN博客

第28讲

MIT_线性代数笔记:第 27 讲 正定矩阵和最小值_xtax最小值-CSDN博客

第29讲

MIT_线性代数笔记:第 28 讲 相似矩阵和若尔当标准型_jordan form-CSDN博客

第30讲

MIT_线性代数笔记:第 29 讲 奇异值分解-CSDN博客

第31讲

MIT_线性代数笔记:第 30 讲 线性变换及对应矩阵_mit线代合同变换-CSDN博客

第32讲

MIT_线性代数笔记:第 31 讲 基变换和图像压缩_线性代数change of basis两种算法-CSDN博客

第33讲复习三

MIT_线性代数笔记:第 32 讲 复习三_a=q位q鍜孉=s位s-CSDN博客

第34讲

MIT_线性代数笔记:第 33 讲 左右逆和伪逆_right inverse-CSDN博客

第35讲总复习

MIT_线性代数笔记:第 34 讲 总复习-CSDN博客

第36讲

MIT_线性代数笔记:线性代数常用概念及术语总结_mit线性代数-CSDN博客

第37讲

MIT_线性代数笔记:线性代数常用计算公式-CSDN博客

 

 

 


http://www.ppmy.cn/server/114236.html

相关文章

Redis 主从复制、切片集群

一、主从复制 1、主从关系 都说的 Redis 具有高可靠性,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是将一份数据同时保存在多个实例上。为了保证数据一致…

在 Ubuntu 上安装 Jenkins,并配置 SSH Server 插件

文章目录 在 Ubuntu 上安装 Jenkins,并配置 SSH Server 插件及实战案例1. 安装 Jenkins步骤 1:更新系统步骤 2:安装 Java步骤 3:添加 Jenkins 仓库并安装步骤 4:启动 Jenkins 服务步骤 5:打开 Jenkins 界面2. 安装 SSH Server 插件步骤 1:安装 SSH Server 插件步骤 2:配…

Python+Jenkins自动化测试持续集成

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 Jenkins安装 Jenkins是一个开源的软件项目,是基于java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用…

【2024高教社杯全国大学生数学建模竞赛】B题模型建立求解

目录 1问题重述1.1问题背景1.2研究意义1.3具体问题 2总体分析3模型假设4符号说明(等四问全部更新完再写)5模型的建立与求解5.1问题一模型的建立与求解5.1.1问题的具体分析5.1.2模型的准备 目前B题第一问的详细求解过程以及对应论文部分已经完成&#xff…

借助Aapose.Cells 在 C# 中将 TXT 转换为 JSON

将TXT文件转换为JSON格式是许多应用程序中的常见要求。JSON(JavaScript 对象表示法)是一种流行的数据交换格式,因为它可读性强且易于使用。在这篇博文中,我们将学习如何在 C# 中将 TXT 文件转换为 JSON。本指南将介绍从 TXT 文件加…

项目中使用 localStorage 获取数据缓存

项目中使用 localStorage 获取数据缓存 需求背景 在项目中,我们经常需要存储一些数据,比如不经常变动的字典项,下拉框中的数据等。这些数据可以缓存到 localStorage 中,这样可以提高应用的响应速度,减少网络请求。 …

JavaSE——封装、继承和多态

1. 封装 1.1 概念 面向对象程序三大特性:封装、继承、多态 。而类和对象阶段,主要研究的就是封装特性。何为封装呢?简单来说就是套壳屏蔽细节 。 比如:对于电脑这样一个复杂的设备,提供给用户的就只是:开…

大数据之Flink(五)

15、Flink SQL 15.1、sql-client准备 启用Hadoop集群(在Hadoop100上) start-all.sh启用yarn-session模式 /export/soft/flink-1.13.0/bin/yarn-session.sh -d启动sql-client bin/sql-client.sh embedded -s yarn-sessionsql文件初始化 可以初始化模式、环境(流/批…