手撕红黑树(map和set底层结构)(2)

server/2024/9/24 3:34:59/

@[TOC]红黑树

一 红黑树概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

简单来说红黑树通过了对颜色的控制进而对树的长度做出了限制,不再需要平衡因子。
红黑树性质

  1. 每个节点不是红色就是黑色
  2. 根节点为黑色
  3. 如果一个节点是红色,那么他的孩子节点就是黑色。没有连续的红色节点
  4. 对于每个节点,他的所以路径上的黑色节点的数量是相同的。
  5. 每个叶子节点都是黑色的(注意:这里的叶子节点指的是空节点

红黑树通过这些性质保证了他的高度是合法的。
在这里插入图片描述
红黑树保证的是:最长路径不超过最短路径的两倍

二 红黑树的实现

2.1 红黑树的结构

enum Color
{Red,Black,
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Color _color;pair<K, V> _kv;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _color(Red), _kv(kv){}
};
template<class K,class V>
class RBtree
{typedef RBTreeNode<K, V> Node;private:Node* _node=nullptr;
}

2.2 红黑树的插入

在这里插入图片描述
我们要注意:我们在插入新节点的时候,默认插入元素的颜色为红色(黑色节点不好控制,因为要保证全部的路径的黑色节点数量是相同的,插入了一个黑色节点,就不能保证这一原则了)
然后插入元素对整棵树的影响我们就要从局部开始看,

  1. 如果插入元素的父亲为黑色那就不用在变化了;
  2. 插入元素的父亲为红色,此时就出翔了连续的红色节点,我们就要对这颗树进行处理;

我们对第二种情况分类讨论(用上述的图片为例)

第一种:cur为红,p为红,g为黑,u存在且为红

把p和u变为黑色,再把g变成红色
到这里就要继续分类讨论:

  1. g为根节点,那就把g再变成黑色。
  2. 如果不是根节点,就把g=c,向上继续处理
    注意(p/u是g的左还是右都不影响,同样cur是p的左还是右也不影响)

第二种: cur为红,p为红,g为黑,u不存在/u存在且为黑
(i)u不存在在这里插入图片描述
这里cur一定是新插入的节点,如果cur不是新插入的节点,cur和p一定有一个是黑色的。
(ii)u存在且为黑色在这里插入图片描述
这里的cur就不是新插入的节点,u是黑色那么,每个路径下黑色节点数量一定相同,所以cur原本一定是黑色的,是因为新插入的原因被变成了红色。
以上这两个情况本质上是一种。
这里就要用到旋转,旋转和前面AVL树的旋转一模一样

p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转

旋转完:p、g变色–p变黑,g变红。

参考下面的图,进一步理解
在这里插入图片描述
在这里插入图片描述
第三种 cur为红,p为红,g为黑,u不存在/u存在且为黑,但这里的左右位置不同

(i) p为g的左,cur为p的右
在这里插入图片描述
在这里插入图片描述
可以看到这里就变回了情况二,根据上面的我们再进行右单旋即可。
在这里插入图片描述
(i) p为g的右,cur为p的左

这个就是先右旋+左旋即可。这个图留个大家去完成。

2.3代码

bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_color = Black;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);//红色if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_color == Red){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//情况一:存在且为红if (uncle && uncle->_color == Red){//变色parent->_color = Black;uncle->_color = Black;grandfather->_color = Red;//向上处理cur = grandfather;parent = cur->_parent;}//情况二:不存在or存在且为黑else{//旋转+变色//    g//  p    u//cif (cur == parent->_left){RotateR(grandfather);parent->_color = Black;grandfather->_color = Red;}else{//情况三//    g//  p    u//     c  RotateL(parent);RotateR(grandfather);cur->_color = Black;grandfather->_color = Red;}break;}}else//p是g的右孩子{Node* uncle = grandfather->_left;//情况一:存在且为红if (uncle && uncle->_color == Red){//变色parent->_color = Black;uncle->_color = Black;grandfather->_color = Red;//向上处理cur = grandfather;parent = cur->_parent;}//情况二:不存在or存在且为黑else{//旋转+变色//    g//  u   p//        cif (cur == parent->_right){RotateL(grandfather);parent->_color = Black;grandfather->_color = Red;}else{//情况三//    g//  u   p//     cRotateR(parent);RotateL(grandfather);cur->_color = Black;grandfather->_color = Red;}break;}}}_root->_color = Black;return true;}

三 检查函数

	bool Check(Node* cur, int BlackNum, int refBlackNum){if (cur == nullptr){if (BlackNum != refBlackNum){cout << "黑色节点的数量不匹配" << endl;return false;}elsereturn true;}if (cur->_color == Red && cur->_parent->_color == Red){cout << "出现了连续的红色节点" << endl;return false;}if (cur->_color == Black)++BlackNum;return Check(cur->_left, BlackNum, refBlackNum) &&Check(cur->_right, BlackNum, refBlackNum);}bool IsBalance(){if (_root == nullptr || _root->_color == Red)return false;//给一个基准值,和其他的黑色节点去比较int refBlackNum = 0;Node* cur = _root;while (cur){if (cur->_color == Black)++refBlackNum;cur = cur->_left;}return Check(_root, 0, refBlackNum);}

四 总结

总的来说红黑树的实现和AVL树非常像,他们就是兄弟,红黑树就是把考虑的因素从平衡因子转变成了颜色。

五 完整代码

#pragma once
#include<assert.h>
#include<vector>
enum Color
{Red,Black,
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Color _color;pair<K, V> _kv;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _color(Red), _kv(kv){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_color = Black;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);//红色if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_color == Red){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//情况一:存在且为红if (uncle && uncle->_color == Red){//变色parent->_color = Black;uncle->_color = Black;grandfather->_color = Red;//向上处理cur = grandfather;parent = cur->_parent;}//情况二:不存在or存在且为黑else{//旋转+变色//    g//  p    u//cif (cur == parent->_left){RotateR(grandfather);parent->_color = Black;grandfather->_color = Red;}else{//情况三//    g//  p    u//     c  RotateL(parent);RotateR(grandfather);cur->_color = Black;grandfather->_color = Red;}break;}}else//p是g的右孩子{Node* uncle = grandfather->_left;//情况一:存在且为红if (uncle && uncle->_color == Red){//变色parent->_color = Black;uncle->_color = Black;grandfather->_color = Red;//向上处理cur = grandfather;parent = cur->_parent;}//情况二:不存在or存在且为黑else{//旋转+变色//    g//  u   p//        cif (cur == parent->_right){RotateL(grandfather);parent->_color = Black;grandfather->_color = Red;}else{//情况三//    g//  u   p//     cRotateR(parent);RotateL(grandfather);cur->_color = Black;grandfather->_color = Red;}break;}}}_root->_color = Black;return true;}void RotateL(Node* parent){//++rotateSize;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){//++rotateSize;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << endl;_InOrder(root->_right);}void InOrder(){_InOrder(_root);}/////检查函数bool Check(Node* cur, int BlackNum, int refBlackNum){if (cur == nullptr){if (BlackNum != refBlackNum){cout << "黑色节点的数量不匹配" << endl;return false;}elsereturn true;}if (cur->_color == Red && cur->_parent->_color == Red){cout << "出现了连续的红色节点" << endl;return false;}if (cur->_color == Black)++BlackNum;return Check(cur->_left, BlackNum, refBlackNum) &&Check(cur->_right, BlackNum, refBlackNum);}bool IsBalance(){if (_root == nullptr || _root->_color == Red)return false;//给一个基准值,和其他的黑色节点去比较int refBlackNum = 0;Node* cur = _root;while (cur){if (cur->_color == Black)++refBlackNum;cur = cur->_left;}return Check(_root, 0, refBlackNum);}
private:Node* _root = nullptr;
};void TestRBTree1()
{//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };int a[] = { 4, 2, 6, 1, 14,16};RBTree<int, int> t;for (auto e : a){if (e == 16){int x = 0;}t.Insert(make_pair(e, e));// 1、先看是插入谁导致出现的问题// 2、打条件断点,画出插入前的树// 3、单步跟踪,对比图一一分析细节原因cout << e << "->" << t.IsBalance() << endl;}t.InOrder();cout << t.IsBalance() << endl;
}

http://www.ppmy.cn/server/10396.html

相关文章

软考 - 系统架构设计师 - ESB(企业服务总线)例题

问题 1&#xff1a; 根据描述 Ramp Control 是负责系统中相关各种业务活动的组件&#xff0c;根据题目描述&#xff0c;系统中包含检查机位环境&#xff0c;卸货&#xff0c;装货等业务活动&#xff0c;所以 Ramp Control 服务组件提供的服务名称就是 “负责检查机位环境&#…

编写一款2D CAD/CAM软件(十六)交互绘制图形

绘制步骤 以交互绘制圆形为例&#xff1a; 点击鼠标左键&#xff0c;确定圆心位置&#xff1b;抬起鼠标&#xff0c;移动鼠标&#xff0c;半径随鼠标位置变化&#xff1b;点击左键确定半径&#xff0c;完成圆的绘制。 绘制结果 Code /// j-operator-create-circle.h#pragma…

使用阿里云试用Elasticsearch学习:sentence-transformers 包使用

环境&#xff1a;centos8&#xff0c;windows坑太多。 一、检查linux环境openssl哪个版本&#xff08;如果是OpenSSL 1.1.1k 直接跳过&#xff09; [roothecs-334217 python39]# openssl version OpenSSL 1.0.2k-fips 26 Jan 2017原因后续会出麻烦&#xff0c;遇到这种情况最…

华为OD机试真题-幼儿园篮球游戏-2023年OD统一考试(C卷D卷)

题目描述: 幼儿园里有一个放倒的圆桶,它是一个 线性结构,允许在桶的右边将篮球放入,可以在桶的左边和右边将篮球取出。每个篮球有单独的编号,老师可以连续放入一个或多个篮球,小朋友可以在桶左边或右边将篮球取出,当桶只有一个篮球的情况下,必须从左边取出。 如老师按顺…

【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)

感觉从 YOLOv6 开始&#xff0c;YOLOv6 系列感觉优化点都着重于推理速度上面&#xff0c;YOLOv6 的 RepBlock 重参数化&#xff0c;给我的感觉就是算子融合进行加速。而 YOLOv7&#xff0c;为了在各种架构的边缘设备上获得极致的推理速度。 YOLOv7 的工作&#xff1a; 新的 b…

【QT】QtConcurrent的使用介绍,与std::thread的区别

QtConcurrent 模块是 Qt 框架中用于简化并发编程的一部分。它提供了一系列高级API&#xff0c;使得开发者能够更容易地编写多线程代码&#xff0c;从而利用多核处理器的能力。这个模块主要围绕使用线程池来执行函数调用、运行算法或者处理数据集。QtConcurrent 的核心优势是它的…

MAC 终端命令

Command Shift . 显示隐藏文件夹 环境变量路径 ~/.zshrc ~/.bash_profile 每次打开都需要 source 安装Homebrew xcode安装 xcode-select --install brew安装 /bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)” 检查是否…

喜讯 | “泰迪杯”数据挖掘挑战赛再次进入计算机类竞赛指数榜单

4月15日&#xff0c;第61届中国高等教育博览会在福州召开。在教师教学发展与创新人才培养论坛上&#xff0c;浙江大学何钦铭教授代表《全国普通高校大学生计算机类竞赛指数》专家工作组发布了最新一年的竞赛指数。据悉&#xff0c;今年的竞赛项目清单包含了28项赛事&#xff0c…