【python】逐步回归(多元线性回归模型中的应用)

server/2024/9/24 19:47:49/

文章目录

  • 前言
  • 一、逐步回归
    • 1. 前进法(Forward Selection)
    • 2. 后退法(Backward Elimination)
    • 3. 逐步回归法(Stepwise Regression)
  • 二、示例
  • 三、代码实现----python


前言

  • Matlab中逐步回归的实现可以使用 Matlab 的 stepwise 函数,本文主要讨论逐步回归如何在 python 中使用。
  • 思路参考视频:
    https://www.bilibili.com/video/BV1kU4y1R7o2/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=67471d3a1b4f517b7a7964093e62f7e6

一、逐步回归

  • 逐步回归(Stepwise Regression)是一种选择统计模型的技术,用于找到最优模型,即通过添加或移除变量来选择合适的特征。
  • 逐步回归主要有三种方法:前进法(Forward Selection)、后退法(Backward Elimination)和逐步回归法(Stepwise Regression)。下面是对这三种方法的简单介绍:

1. 前进法(Forward Selection)

概念

  • 前进法从一个空模型开始,即最初没有任何预测变量。
  • 然后逐步添加预测变量,每次添加一个变量,使得新模型的评价指标(如AIC、BIC、R^2等)最优。
  • 继续这个过程,直到添加任何更多的变量都不能显著提高模型的性能。

步骤

  1. 从空模型开始,不包含任何预测变量。
  2. 评估每个未加入模型的变量,将使模型性能最优的变量加入模型。
  3. 重复步骤2,直到添加任何变量都不能显著改善模型。

2. 后退法(Backward Elimination)

概念

  • 后退法从包含所有预测变量的模型开始。
  • 然后逐步移除预测变量,每次移除一个变量,使得新模型的评价指标最优。
  • 继续这个过程,直到移除任何更多的变量都不能显著提高模型的性能。

步骤

  1. 从包含所有可能的预测变量的全模型开始。
  2. 评估每个变量的显著性,移除最不显著的变量(即对模型贡献最小的变量)。
  3. 重复步骤2,直到移除任何变量都不能显著改善模型。

3. 逐步回归法(Stepwise Regression)

概念

  • 逐步回归法结合了前进法和后退法,既可以添加变量也可以移除变量。
  • 每次步骤既可以是添加一个新变量,也可以是移除一个现有变量,以达到模型性能的最优。

步骤

  1. 从空模型开始或包含所有预测变量的模型开始(具体取决于实现方式)。
  2. 在每一步中,评估所有可能的添加或移除变量的操作。
  3. 选择对模型性能最优的操作(添加或移除一个变量)。
  4. 重复步骤2和步骤3,直到添加或移除任何变量都不能显著改善模型。

二、示例

  • 水泥凝固时放出的热量 y y y 与水泥中 4 种化学成分 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4 有关,今测得一组数据如下,试用逐步回归确定一个线性模型,并找出影响水泥凝固时放出热量的必要因素
    在这里插入图片描述
    根据此示例,本文选用后退法选择出影响水泥凝固时放出热量的必要因素。

python_54">三、代码实现----python

1. 输入数据

python">import pandas as pd
import numpy as np
# 数据
x1 = np.array([7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10])
x2 = np.array([26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68])
x3 = np.array([6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8])
x4 = np.array([60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12])
y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4])# 自变量矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})

2. 初始化

本文选用的后退法,所以被选择的因素初始化为包含所有因素,被排出的元素列表为空。

python"># 初始化未被选中的因素
excluded = list(initial_list)
# 初始化被选中的因素
included = list(set(X.columns) - set(excluded))

3. 评估每个变量的显著性

本文中使用 P P P 值的大小评估每个变量的显著性。

步骤:

  1. 拟合回归模型
  2. 获取所有特征的P值
  3. 找到最大的P值及其对应的特征。
python"># 拟合选中的因素
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的
p_values = model.pvalues# 排除常数项(截距项)的P值
p_values = p_values.drop('const')# 找到最大的P值及其对应的特征
max_p_value = p_values.max()
print("最大的P值为:",max_p_value)

4. 判断函数退出的标志

直到被选中的因素拟合后得到的最大 P P P 值小于 α ( 0.05 ) \alpha(0.05) α(0.05),意味着移除任何变量都不能显著改善模型,函数退出。

python">def stepwise_selection(X, y, initial_list = [], threshold = 0.05,mark = True):# 初始化未被选中的因素excluded = list(initial_list)# 初始化被选中的因素included = list(set(X.columns) - set(excluded))while mark:# 拟合选中的因素model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的p_values = model.pvalues# 排除常数项(截距项)的P值p_values = p_values.drop('const')# 找到最大的P值及其对应的特征max_p_value = p_values.max()print("最大的P值为:",max_p_value)if max_p_value < threshold:mark = Falseprint("最终模型:")print(model.summary())# 获取回归系数b = model.paramselse:max_p_feature = p_values.idxmax()print("最大的P值对应的特征为:",max_p_feature)# 从被选中的因素中去除included.remove(max_p_feature)print("更新后的因素为:",included)return included, b

5. 逐步回归的完整代码

python">import pandas as pd
import numpy as np
import statsmodels.api as sm# 数据
x1 = np.array([7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10])
x2 = np.array([26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68])
x3 = np.array([6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8])
x4 = np.array([60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12])
y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4])# 自变量矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})def stepwise_selection(X, y, initial_list=[], threshold=0.05,mark = True):# 初始化未被选中的因素excluded = list(initial_list)# 初始化被选中的因素included = list(set(X.columns) - set(excluded))while mark:# 拟合选中的因素model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的p_values = model.pvalues# 排除常数项(截距项)的P值p_values = p_values.drop('const')# 找到最大的P值及其对应的特征max_p_value = p_values.max()print("最大的P值为:",max_p_value)if max_p_value < threshold:mark = Falseprint("最终模型:")print(model.summary())# 获取回归系数b = model.paramselse:max_p_feature = p_values.idxmax()print("最大的P值对应的特征为:",max_p_feature)# 从被选中的因素中去除included.remove(max_p_feature)print("更新后的因素为:",included)return included, bresult, b = stepwise_selection(X, y)print(result)
print(b)

运行结果:

评估变量显著性的过程:
在这里插入图片描述

最终的模型:
在这里插入图片描述

回归系数:
在这里插入图片描述

6. 生成三维图的代码

python">import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np# 计算Z的值
Z = b['const'] + b['x1'] * x1 + b['x2'] * x2# 创建一个新的3D绘图对象
fig = plt.figure()
'''
111 的具体含义是:
第一位 1:整个图形只有 1 行。
第二位 1:整个图形只有 1 列。
第三位 1:子图在这个 1x1 网格中的第 1 个位置。
'''
ax = fig.add_subplot(111, projection='3d')# 绘制散点图
ax.scatter(x1, x2, Z, c='r', marker='o', label='Data Points')# 创建网格以绘制曲面
x1_range = np.linspace(min(x1), max(x1), 100)
x2_range = np.linspace(min(x2), max(x2), 100)
x1_grid, x2_grid = np.meshgrid(x1_range, x2_range)# 计算曲面上的Z值
Z_surface = b['const'] + b['x1'] * x1_grid + b['x2'] * x2_grid# 绘制曲面图
'''
alpha意义:alpha 参数用于设置曲面的透明度。
取值范围:alpha 的取值范围是 0 到 1 之间。
0 表示完全透明,即不可见。
1 表示完全不透明。
作用:通过调整 alpha 参数,你可以在同一视图中更好地叠加多个图形,使得它们不会完全遮挡对方。cmap意义:cmap 参数用于设置曲面的颜色映射(colormap)。
常见的颜色映射:viridis, plasma, inferno, magma, cividis, jet, rainbow, coolwarm, hot 等。
作用:颜色映射用于根据 Z 值来着色曲面,帮助更清晰地展示高度或强度的变化。
'''
ax.plot_surface(x1_grid, x2_grid, Z_surface, alpha=0.5, cmap='viridis')# 设置标签
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Z')# 添加图例
ax.legend()# 显示图形
plt.show()

运行结果:

在这里插入图片描述


http://www.ppmy.cn/server/103722.html

相关文章

极限02:两个重要极限

1.夹逼准则 定义&#xff1a;设{ a n a_n an​}, { b n b_n bn​}, { c n c_n cn​}为实数列&#xff0c; a n ≤ b n ≤ c n a_n≤b_n≤c_n an​≤bn​≤cn​, 且 lim ⁡ n → ∞ a n lim ⁡ n → ∞ c n l \lim_{n \to \infty} a_n \lim_{n \to \infty} c_n l n→∞lim​…

平衡日常工作与提升式学习话题有感

文章目录 前言1.工作是什么&#xff1f;2.怎么提升技术&#xff1f;3.工作/学习与生活的平衡总结 前言 这篇博客是针对程序员如何平衡日常编码工作与提升式学习&#xff1f;这个话题进行的个人观点阐述&#xff0c;个人所思所想罢了。 刚毕业没几年&#xff0c;水平有限&#…

运行微信小程序报错:Bad attr data-event-opts with message

问题 使用uniapp 编译&#xff0c;运行微信小程序环境时&#xff0c;报错 Bad attr data-event-opts with message。&#xff08;这个错误报错原因很多&#xff0c;这里只解决一个&#xff09; 原因 原因是&#xff1a;代码中有&#xff1a; :key"swiperList i"…

RAM(随机存取存储器)都有哪些?(超详细)

目录 RAM的特点 RAM的类型 1. SRAM&#xff08;静态随机存取存储器&#xff09; 2. DRAM&#xff08;动态随机存取存储器&#xff09; 3. SDRAM&#xff08;同步动态随机存取存储器&#xff09; 4. DDR SDRAM&#xff08;双倍数据速率同步动态随机存取存储器&#xff09;…

【Python开发实践】AI人机对战五子棋——程序调用及运行效果

主函数调用&#xff1a; if __name__ __main__:game Game(version)while True:game.play()pygame.display.update()for event in pygame.event.get():if event.type pygame.QUIT:pygame.quit()exit()elif event.type pygame.MOUSEBUTTONDOWN:mouse_x, mouse_y pygame.mou…

打破接口壁垒:适配器模式让系统无缝对接

适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许不兼容的接口之间协同工作。主要用途是将一个类的接口转换成客户期望的另一个接口&#xff0c;使得原本接口不兼容的对象可以一起工作。 一、适配器模式的组成 目标接口&#xff08…

Unix或Linux系统中创建链接

在Unix或Linux系统中&#xff0c;链接&#xff08;Linking&#xff09;通常指的是创建一个指向现有文件的快捷方式或别名。有两种主要的链接类型&#xff1a; 硬链接&#xff08;Hard Link&#xff09;&#xff1a; 硬链接是文件系统的原生特性&#xff0c;它允许一个文件名指…

(九)基于 Flink DataStream API 应用案例

在 11.11 购物节大促活动中,天猫、京东等商家会对外发布购物节对应的交易金额、单量等信息,下面我们以 2023.11.11 购物节大促为背景,完成如下任务的计算: 问题1:每隔 1 秒统计购物节当日从零点开始,截止到当前时间总交易额。 问题2:基于销售的商品,按照品牌分类,每小…